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[1] Short-wave directional distributions estimated using HF (high-frequency) radar are
compared with model predictions. The short-wave directional distributions are estimated
on the basis of HF radar using two- and four-parameter parametric models to describe
short-wave directional distributions. The model-predicted short-wave directional
distributions are computed using the energy balance equation. The nonlinear interaction
source function in the energy balance equation is calculated from both the exact
computation and the discrete interaction approximation (DIA). The predicted short-wave
directional distributions from the exact computation and the DIA are compared with those
estimated using HF radar. The energy balance equation is simplified by neglecting the
propagation term, and the validity of the simplification is investigated. It is found that the
four-parameter model is more accurate than the two-parameter model to estimate short-
wave directional distribution using HF radar. The model-predicted mean short-wave
directions with respect to wind directions are correlated with those estimated from the HF
radar. The short-wave direction change associated with a sudden wind shift can be
reproduced both from the exact computation and the DIA. The predicted second-order
moments of short-wave directional distributions are also correlated with those estimated
from the HF radar. This result shows that the model can reproduce transient short-wave
directional distributions associated with changes of wind direction. The short-wave
directional distributions predicted by the exact computation are narrower than those
predicted by the DIA and estimated using the HF radar. The simplification of the energy
balance equation is not the main source of the short-wave prediction error.

Citation: Hisaki, Y. (2007), Directional distribution of the short wave estimated from HF ocean radars, J. Geophys. Res., 112,

C10014, doi:10.1029/2007JC004296.

1. Introduction

[2] Ocean surface waves are expressed as a superposition
of linear waves of differing frequencies and directions in the
first-order approximation. Waves are described in terms of
wave spectra F = F(w, q) at radian frequencies w and wave
directions q (hereinafter, the clockwise direction with
respect to the eastward direction is positive). Wave param-
eters such as wave height and wave period can be obtained
from the wave spectrum F(w, q).
[3] The parameter characterizing wave directional distri-

bution such as the s-parameter (value of s for cos2s(q/2)
distribution) or standard deviation (second-order moment)
sq of the directional distribution is less paid attention,
especially for the short-wave length. The possible reasons
for this are as follows: (1) The wave directional spectrum of
short-wave length is less important for marine engineering
such as ship navigation and marine construction. (2) The
wave directional spectral values of short-wave length are

much smaller than the spectral peak values, and are often
contaminated by noise in in situ observations.
[4] However, the wave directional spectrum of short-

wave length is important for active remote sensing such
as scatterometer and HF (high-frequency) ocean radar. It is
necessary to estimate the wave directional spectrum at
higher wave frequencies sufficient to resolve the Bragg
wavelength, which is the same order as the radio wave-
length, for predicting radio wave scattering from the sea
surface and for remote sensing.
[5] The numerical wave model predicts wave spectra.

The energy balance equation is integrated numerically with
respect to time as a means to predict wave spectra. Wave
parameters such as wave heights and periods are obtained
from wave spectra F(w, q). The wave models such as WAM
[WAMDI group, 1988] are verified by comparing the wave
heights and periods obtained from in situ observations
[WAMDI group, 1988] or from altimetric remote sensing
[Romeiser, 1993].
[6] The validation of wave models by comparing wave

directional distributions with those obtained from other
sensors is important. If it is possible to predict the wave
directional spectrum of short-wave length by the wave

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C10014, doi:10.1029/2007JC004296, 2007
Click
Here

for

Full
Article

1Department of Physics and Earth Sciences, Faculty of Science,
University of the Ryukyus, Okinawa, Japan.

Copyright 2007 by the American Geophysical Union.
0148-0227/07/2007JC004296$09.00

C10014 1 of 21

http://dx.doi.org/10.1029/2007JC004296


model, we can predict radio wave scattering by modeling
sea surface waves.
[7] The wave directional spectrum by the sea truth is

estimated from the cross spectra of measured wave character-
istics (e.g., wave elevations, pressures, orbital velocities).
However, these wave characteristics are contaminated by
noise, and the wave directional spectrum estimated from the
sea truth is affected by noise, especially at higher frequencies.
[8] One of the sensors for the estimation of a wave

spectrum is HF ocean radar. HF ocean radar can estimate
the wave directional spectrum [Hashimoto et al., 2003;
Hisaki, 1996, 2005, 2006; Lipa and Nyden, 2005; Wyatt,
1990] and ocean currents [Hisaki et al., 2001; Hisaki and
Naruke, 2003; Shay et al., 1998; Takeoka et al., 1995]. In
particular, parameters characterizing wave directional dis-
tribution at the Bragg wavelength such as the s-parameter
can be easily estimated, because they are obtained from the
first-order scattering which is less affected by noise.
[9] The first-order echoes in the Doppler spectrum of HF

radar are much larger than the existing noise and less
affected by it. We can expect that the directional distribu-
tions at the Bragg frequency (0.505 Hz in this case)
estimated using HF ocean radar are more accurate than
those based on in situ observations, if the model function of
the directional distribution is valid. Therefore HF ocean
radar is useful to verify the model’s prediction of short-
wave directional distribution.
[10] The objective of this study is to verify the model-

predicted short-wave (wave of Bragg wavelength) direc-
tional distributions by comparing those estimated using HF
ocean radar. The wave model for predicting wave spectra is
described as

DF

Dt
¼ St ¼ Sin þ Sds þ Snl; ð1Þ

where the total derivatives of F = F(w, q) with respect to
time t includes the propagation term, and St is the source
function. The source function St in the wave model is
composed of wind input (Sin), dissipation (Sds), and
nonlinear interaction source functions (Snl). The parameter-
ization of the nonlinear interaction source function is
important for predicting wave directional distributions. For
example, Banner and Young [1994] showed that the
bimodal wave directional distribution can be reproduced
from the wave model in which the exact computation of the
nonlinear interaction source function is adopted. We focus
on the comparison between the exact computation and the
discrete interaction approximation (DIA [Hasselmann and
Hasselmann, 1985]) of the nonlinear interaction source
function.
[11] However, it is not feasible to calculate (1) for the

exact computation of Snl because of the long computation
time. Therefore we take another approach: The wave
propagation term in (1) is omitted and

@F

@t
¼ Sin þ Sds þ Snl ð2Þ

is used to predict wave spectra. The wave propagation term
is omitted from both the exact and the DIA calculation. The
validity of equation (2) will be investigated from other data.

[12] Section 2 reviews the method to estimate wave
directional distribution from first-order echoes. Section 3
describes the wave model. The observation and data de-
scription are reported in section 4. The general features of
the model and data analysis are presented in section 5.
Section 6 describes the comparison of wave parameters. The
validity of equation (2) is investigated in section 7. A
discussion and conclusions are presented in section 8.

2. Analysis of HF Radar Doppler Spectrum

[13] HF ocean radar radiates HF radio waves on to the sea
surface, and Doppler spectra are obtained by analyzing the
scattered signals. Figure 1 shows an example of a Doppler
spectrum. The first-order radar cross section, which is
proportional to the first-order Doppler spectrum is written as

s1 wDð Þ ¼ 26pk40
X
m¼�1

S �2mk0ð Þd wD � mwBð Þ; ð3Þ

where m denotes the sign of the Doppler shift, k0 is the
incident radio wavenumber vector, k0 = jk0j, wD is a radian
Doppler frequency, wB = (2gk0)

1/2 is a radian Bragg
frequency, g is the acceleration of gravity, S(k) = F(w, q)Cg/k
is the oceanwave spectrum, k = (k cos q, k sin q) [e.g.,Barrick,
1972], and Cg = @w/@k is the group velocity.
[14] The integral of the first-order Doppler spectra is

denoted by P� for negative Doppler frequencies and P+

for positive Doppler frequencies as shown in Figure 1.
[15] The ratio of the first-order peaks ri for the beam nb

(nb = 1,.., NT, where NT is the total number of beam
directions) and the Doppler spectrum number i is written as

ri ¼
Pþ

P�
¼ S �2k0ð Þ

S 2k0ð Þ ¼ D f nbð Þ þ pð Þ
D f nbð Þð Þ ; ð4Þ

where D(q) = D(wB, q) is the directional distribution at
wavenumber 2k0 or radian frequency wB, and f(nb) is the
radar beam direction for the beam nb. The normalized wave
directional distribution is expressed as

D qð Þ ¼
XL
k¼1

a2k cos
2s q� bk

2

� �" #
2p1=2

G sþ 1=2ð Þ
G sþ 1ð Þ

XL
k¼1

a2k

" #�1

;

ð5Þ

where G is the Gamma function, L = 1 denotes the two-
parameter model of the wave directional distribution, L = 2
denotes the four-parameter model, s is the spread parameter,
a1 = 1, a2

2 (a2
2 � a1

2) denotes the (relative) amplitude of the
secondary directional distribution peak, and b1 and b2 are
dominant directions of primary and secondary peaks,
respectively. The number of parameters for the bimodal
distribution is N = 2L = 4.
[16] Hisaki [2004] estimated directional distributions for

the sech2(b(q � bk)) form [e.g., Donelan et al., 1985]
instead of equation (5) in the simulation study, where b is
the parameter of the directional distribution. The accuracy
of the directional distribution for equation (5) is better than
that for the sech2(b(q � bk)) form, and equation (5) is used
as the directional distribution.
[17] The feasibility of using HF ocean radars to identify

the bimodal distribution has been investigated [Hisaki,
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2004]. It was shown that the number of beam directions was
critical to the accurate estimation of wave parameters in the
case of bimodal distribution, and it was strongly suggested
that as many radar sites as possible should be used to
identify the bimodal distribution [Hisaki, 2004]. Therefore
the homogeneity of the wave field in the HF radar obser-
vation area is assumed in the present study.
[18] If the homogeneity of the wave field is assumed, the

wave parameters s, bk and a2
2 are estimated by seeking the

minima of Lg defined as

log Lg
� �

¼
XMD

i

� log cið Þ þ 1� n1;i
2

� 	
logZi

h

þ 1

2
n1;i þ n2;i
� �

log n2;i þ n1;iZi
� �

þ log
n1;i
n2;i

rt;i

� ��
;

ð6Þ

where

log cið Þ ¼ n1;i
2

log n1;i þ
n2;i
2

log n2;i þ log G
1

2
n1;i þ n2;i
� �� �� �

� log G
n1;i
2

� 	h i
� log G

n2;i
2

� 	h i
; ð7Þ

and MD is the number of Doppler spectra [e.g., Hisaki,
2004;Wyatt et al., 1997]. The value Zi for Doppler spectrum
data number i is

Zi ¼
n2;i
n1;i

ri

rt nb ið Þð Þ ; ð8Þ

and it obeys F-distribution with degrees of freedom (n1,i,
n2,i), where (n1,i, n2,i) is determined on the basis of the
signal processing of the Doppler spectra. The value ri is the
observed first-order echo ratio (equation (4)), and rt = rt,i in
equations (6) and (8) is the true Bragg ratio as

rt nb ið Þð Þ ¼ D f nbð Þ þ pð Þ
D f nbð Þð Þ

¼
XL
k¼1

a2k sin
2s f nbð Þ � bk

2

� �" #

	
XL
k¼1

a2k cos
2s f nbð Þ � bk

2

� �" #�1

: ð9Þ

The area-averaged short-wave parameters are estimated in
this method.
[19] Because two radars are used, the wave parameters

can be estimated for the two-parameter model (L = 1 in
equation (5)) in the two-radar coverage area by solving
equation (4) [Hisaki, 2002]. The ratios of the first-order
peaks are spatially interpolated on regular grid points. The
wave parameters b1 and s are estimated on regular grids.
The horizontal variability is assessed from gridded b1 and s.
In order to compare radar-estimated wave directional
distributions with the model’s predictions, second-
order moments of wave directional distributions are calcu-
lated as

sq wð Þ ¼
Z qmþp

qm�p
q� qmð Þ2D w; qð Þdq

� �1=2
; ð10Þ

where qm = qm(w) is the mean direction for the normalized
distribution D(w, q). Equation (10) is used for both radar
estimations and model predictions. The value sq(w) is a
useful measure of wave directional distribution, because it
does not require any a priori assumption regarding the shape
of the directional distribution.

3. Wave Model

[20] The parameterization of the source function is the
same as WAM cycle 3 except for the nonlinear interaction
source function. The wind input source function Sin is
written as

Sin ¼ bF w; qð Þ; ð11Þ

where

Q ¼ 0:25
ra
rw

28
u*
c

cos q� qwð Þ � 1
� 	

w ð12Þ

b ¼ max 0;Q½ �; ð13Þ

where q is the direction of wavenumber vector k, qw is the
wind direction, ra (rw) is the air (water) density and c = w/k
is the phase speed. The friction velocity u* is written as

u* ¼ C
1=2
D u; ð14Þ

where the drag coefficient CD is

CD ¼ cd1 þ cd2u; ð15Þ

cd1 = 0.8 � 10�3, cd2 = 0.065 � 10�3, u is the wind speed at
10 m height [Wu, 1980].
[21] The dissipation source function Sds for deep water is

written as

Sds ¼ �adŵ
w
ŵ

� 	2 â
âPM

� �2

F w; qð Þ ð16Þ

Figure 1. Example of a Doppler spectrum. The shaded
areas are P� and P+.
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where

â ¼ E0ŵ4; ð17Þ

E0 ¼
Z p

�p

Z 1

0

F w; qð Þdwdq; ð18Þ

W ¼
Z p

�p

Z 1

0

F w; qð Þw�1dwdq; ð19Þ

ŵ ¼ EW�1; ð20Þ

âPM = 3.016 � 10�3 and ad = 2.33 � 10�5 [WAMDI group,
1988].
[22] The nonlinear interaction source function Snl is

calculated by the exact computation and DIA. The
method of exact computation is based on that described
by Komatsu and Masuda [2001], which is improved from
Masuda [1980] and Komatsu et al. [1993]. The advantage
of this method is that the numerical integration of
equation (A1) is stable, while the exact NL [Hasselmann
and Hasselmann, 1981] is unstable owing to the singu-
larities at S0 = 0 in equation (A6). The numerical
computation method of Snl in equation (2) by exact
computation is described in Appendix A.
[23] The DIA is also used for comparison. In the DIA,

two quadruplets of wavenumber vectors k1, k2, k3N and k4
are considered, both with wave frequencies:

w1 ¼ w2 ¼ w ð21Þ

w3 ¼ 1þ lnlð Þw ¼ wþ ð22Þ

w4 ¼ 1� lnlð Þw ¼ w�: ð23Þ

The wavenumber vector directions with frequencies w1, w2,
w3, and w4 are respectively q1, q2, q3, and q4, and they are
written as

q1 ¼ q2 ¼ q ð24Þ

q3 � q ¼ �qþ ¼ � arccos
1þ 2lnl þ 2l3

nl

1þ lnlð Þ2

 !
ð25Þ

q4 � q ¼ �q� ¼ � arccos
1� 2lnl � 2l3

nl

1� lnlð Þ2

 !
ð26Þ

and lnl = 0.25.

[24] The increment of wave energy for deep water is

dSnl
dSþnl
dS�nl

0
@

1
A ¼

2DwDq=DwDq

1þ lnlð ÞDwDq=DwþDq

1� lnlð ÞDwDq=Dw�Dq

0
@

1
ADd w;w3;w4; q; q3; q4ð Þ;

ð27Þ

Dd w;w3;w4; q; q3; q4ð Þ ¼ 2pð Þ�9
C0w11

	 F w; qð Þð Þ2 F w3; q3ð Þ
1þ lnlð Þ4

þ F w4; q4ð Þ
1� lnlð Þ4

( )"

�2
F w; qð ÞF w3; q3ð ÞF w4; q4ð Þ

1� l2
nl

� �4
#
; ð28Þ

where dSnl, dSnl
+ , and dSnl

� are increments at wavenumber
vectors k1(= k2), k3, and k4 respectively, and C0 = 3 � 107

[e.g., Hasselmann et al., 1985]. The frequency resolution at
w, w+, and w� are respectively Dw, Dw+, and Dw�. The
angular increment Dq is a constant.

4. Observation

4.1. HF Radar Observation

[25] The HF ocean radar of the Okinawa Radio Observa-
tory, Communications Research Laboratory (Okinawa Sub-
tropical Environment Remote-Sensing Center, National
Institute of Information and Communications Technology)
was deployed along the coast of the eastern part of Okinawa
Island. The observation of ocean current fields and surface
waves using this HF ocean radar was conducted from
15 April 1998 to 15 May 1998. The radio frequency was
24.5 MHz, the Bragg wavelength 6.1 m, and the radian
Bragg frequency wB = 3.179 rad/s. The temporal resolution
of the radar system was 2 hours.
[26] Figure 2 shows HF radar observation area. The radar

stations were located at site A (26�7.190N, 127�45.780E)
and site B (26�18.630N, 127�50.250E). The details of the
observation and the radar system have been previously
described [Hisaki et al., 2001; Hisaki, 2002]. The Doppler
spectra are sampled at radial grids with origin at radar
positions. The radial resolution is 1.5 km. The area-
averaged wave parameters are estimated using radial grids
as shown in Figure 2. The homogeneity of the wave field in
the radar observation area is assumed. The effect of the
assumption on the wave prediction error will be investigated
in section 7.
[27] The gridded wave parameters are estimated using

first-order Bragg echoes on the grid points shown in
Figure 2. The first-order Bragg echoes on the regular grid
points are estimated using a bilinear spatial interpolation.
The resolution of the regular grid is 1.5 km. The estimated
short-wave parameters are only s and b1 for L = 1 in
equation (5). These parameters can be used to diagnose
the horizontal variabilities of wave fields.

4.2. Other Data

[28] Wind data on the sea surface are not available. The
surface wind data at 10-min intervals at station I (Itokazu,
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26�090N, 127�460E) in Figure 2 were supplied by the Japan
Meteorological Agency (JMA). The comparison of wind
directions at station I and short-wave directions estimated
using HF radar shows the root-mean-square (RMS) differ-
ence between them is 31� [Hisaki, 2002]. In addition, most
of the outliers in the scatter diagram between wind direc-
tions at station I and short-wave directions estimated using
HF radar are associated with sudden changes of wind
direction.
[29] Wave height was observed at station Ky (Kyan,

26�40N, 127�430E) in Figure 2 by JMA. An ultrasonic wave
height meter was used for measurement at a water depth of
51 m and 1370 m off the coast. The wave sensor measures
surface waves at 0.25-s intervals. The hourly significant
wave heights and periods were estimated using the zero-up-
cross method based on 20 min of observation (4800
samples) of surface displacements.
[30] The wave heights are also observed at station Ng

(Nakagusuku, 26�14.50 127�580) in Figure 2 by Port and
Harbour Research Institute. The wave sensor measures
surface waves at 0.5-s intervals. The significant wave
heights and periods were estimated using the zero-up-cross
method based on 20 min of observation of surface displace-
ments at 2-hour intervals.
[31] Wave and wind data every 9 Japan Standard Time

(JST) at P in Figure 2 (26�N, 128�E) are also available
[Japan Meteorological Agency, 1999, Figure 5]. The wave
heights and directions are hindcasted using the numerical
model [Ichinari and Kohno, 1997]. The JMAwave model is

a WAM-type model, although there are differences in the
parameterizations of the source functions.

5. General Features

5.1. Comparison Between Exact Computation and DIA

[32] Figure 3 shows examples of the nonlinear source
function Snl(w, q). The wave spectrum is the JONSWAP
type and the Mitsuyasu-Hasselmann distribution [Mitsuyasu
et al., 1975; Hasselmann et al., 1980] as

F w; qð Þ ¼ E wð ÞD w; qð Þ; ð29Þ

where E(w) is the frequency spectrum written as

E wð Þ ¼ aw�5 exp � 5

4

w4

w4
m

exp log gð Þ exp � w� wmð Þ2

2s2w2
m

" #( ) !

ð30Þ

with g = 3.3, s = 0.07 for w < wm, s = 0.09 for w > wm, and
a = 8.1 � 10�3. The directional distribution is given by
equation (5) with L = 1, b1 = 0 and

s ¼ 100:99 w=wmð Þbs ; ð31Þ

where bs = 4.06 for w < wm and bs = �2.34 for w � wm. The
peak wave frequency is wm = 0.4p rad/s. The minimum and
maximum radian frequencies are respectively wmin =
0.453 (rad/s) and wmax = 5.551 (rad/s), which corresponds
to wavelengths of 300 m and 2 m, respectively.
[33] Figures 3a and 3b show integrals of the nonlinear

source functions with respect to q., i.e., T1(w) =
R
Snl(w, q)dq.

The difference between exact computation and the DIA is
same as that of Hasselmann et al. [1985]. For example, the
strong negative lobe appears in the DIA (Figure 3b). The
differences of T1(w) between different wave frequency and
direction resolutions are not so large in exact computation.
The peaks of the T1(w) are more dependent on frequency
resolution rather than on direction resolution. This fact
shows that the peak wave frequencies of T1(w) are not
captured in the coarse wave frequency resolution case. The
present method of exact computation of the nonlinear
source function is stable.
[34] Figure 4 shows wave spectra calculated from

equation (2) for the exact computation of Snl (hereinafter,
referred to as ‘‘exact computation’’) and the DIA. The wind
speed is 7 m/s and the integration time is 7 days. The wave
heights (4E0

1/2) for exact computation and the DIA are
0.75 m and 0.83 m, respectively. The shapes of the wave
frequency spectra are similar to each other. The short-wave
directional distribution calculated by exact computation is
narrower than that calculated by the DIA.
[35] The directional distributions are bimodal for

lower frequencies (i.e., smaller than 1 rad/s in Figures 4b
and 4d). This bimodal structure is clearer in Figure 4b
(exact computation) than in Figure 4d (DIA). The nonlinear
transfer function Snl(w, q) for a fixed w lower than 1 rad/s
has two peaks which are symmetrical with respect to q = 0�.
The difference between the maximum and the minimum
value of Snl(w, q) for a fixed w lower than 1 rad/s

Figure 2. Map of the observation area. A and B, locations
of the HF ocean radars; I, meteorological station; Ky and
Ng, wave observation points; P, JMA-analyzed wave data
point. The black circles are radial grid points sampling
Doppler spectra for estimating area-averaged wave
parameters, and crosses are regular grid points to estimate
gridded wave parameters.
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calculated by exact computation is larger than that calculated
from the DIA. Therefore a bimodal structure for lower
frequencies is clear in the case of the exact computation as
seen in Figure 4b.

5.2. Wave Model Parameters

[36] The model parameters to predict wave parameters are
as follows: The minimum and maximum radian frequencies
are respectively wmin = 0.453 (rad/s) and wmax = 5.551 (rad/s).
The number of frequencies is Nmax = 32 and the frequency
step is rw = 1.084 (equation (A17)). The number of
directions is M = 24 (equation (A18)). The minimum
threshold of the kernel in equation (A6) is Kmin = 10�6

and the number N34 (equation (A19)) is N34 = 29. The sea
surface wind data is not available. We calculated wave
spectra for winds as

u ¼ aw UI cos qI ;UI sin qIð Þ; ð32Þ

where UI and qI show wind speeds and directions at station I
in Figure 2. The directions qI agree with HF radar-estimated
short-wave directions [Hisaki, 2002], thus they are typical
values of wind directions on the sea surface. Because we do
not know the value of the factor aw, we calculated for
various aw and investigated the sensitivity of wave
parameter predictions on the factor aw. The integration of
equation (2) starts from 00 JST 14 April, 1998. The time
step is 240 sec, and the semi-implicit scheme [WAMDI
group, 1988] is used.

5.3. Wave and Wind Data

[37] Figure 5 shows the time series of wave parameters
and winds during the HF radar observation period. The
wave heights at Ky (Hk) and Ng (Hn) (Figure 2) agree
closely with each other. The difference of wave heights at
Ky and Ng is large on 25 April 1998 when the atmospheric
front passed near the HF radar observation area [Hisaki,
2002]. The difference of wave heights is also large on
3 May 1998 when the atmospheric front is close to the
HF radar observation area [Japan Meteorological Agency,
1998].
[38] The temporary change of JMA-analyzed wave

heights at P in Figure 2 (26�N, 128�E) is similar to that
of wave heights at Ky and Ng (Figure 5a). The mean wave
heights during the period at Ky, Ng, and P in Figure 2
(26�N, 128�E) are 0.85 m, 0.95 m, and 1.3 m, respectively.
[39] Figure 5b shows the time series of significant wave

periods. The wave periods at both Ky and Ng are long on
19 April, 26 April, and 9 May. Some of them are associated
with the local maxima of wave heights, but some are not. For
example, the wave height and wind speeds are not as large on
19 April, suggesting that the swell is dominant.
[40] Figure 5c shows the time series of hourly wind

speeds UI at the station I and JMA-analyzed wind speeds
at P in Figure 2 (26�N, 128�E). The temporary change of
JMA-analyzed wind speeds are similar to those of wind
speeds recorded at station I. The mean wind speeds at P
(26�N, 128�E) and station I are 4.8 and 4.0 m/s, respec-
tively. Figure 5d shows the time series of wave and wind
directions at the station I and JMA analyzed wind directions
at P in Figure 2 (26�N, 128�E). The fetch is unlimited in
most of the period. The RMS difference of wind directions
at station I (qI) and JMA-analyzed wind directions (qW) is
62�, which is larger than the difference between HF radar
short-wave directions and wind directions at station I. This
is due to the horizontal variability of winds. The difference
between wind directions at station I (qI) and JMA-analyzed

Figure 3. Examples of the nonlinear source function
Snl(w, q). (a) Exact computation of T1(w) (integral of Snl(w, q)
with respect to q) and (b) DIA of T1(w) for the spectrum as in
equations (29), (30), and (31). Thick solid line, Nmax = 32,
M = 36; thick dotted line, Nmax = 22, M = 20; thin solid line,
Nmax = 32, M = 24; thin dotted line, Nmax = 22, M = 36; thin
dashed line, Nmax = 32, M = 20.

C10014 HISAKI: DIRECTIONAL DISTRIBUTION

6 of 21

C10014



wave directions (qS) is large on 17 April, 19 April, and 27
April.

6. Wave Parameter Comparisons

6.1. Comparison of Wave Heights

[41] Figure 6 shows examples of the comparison of
significant wave heights. The comparisons for various aw
in equation (32) are summarized in Figure 7. The correlation
coefficients (rc(Hn, Hp)) between wave heights at Ng (Hn)
and predicted wave heights (Hp) are larger than correlation
coefficients (rc(Hk, Hp)) between wave heights at Ky (Hk)

and predicted wave heights (Hp). The RMS difference
(Dr(Hn, Hp)) between Hn and Hp is also smaller than the
RMS difference (Dr(Hk, Hp)) between Hk and Hp, because
station Ky in Figure 2 is more affected by the local
topography. The RMS difference Dr(Hn, Hp) is the smallest
at aw = 1.5 for the exact calculation, while Dr(Hn, Hp) is the
smallest at aw = 1.3 for the DIA. The value of rc(Hk, Hp) for
the DIA is larger than that for the exact computation, and
Dr(Hn, Hp) for the DIA is smaller. The wave heights tend to
be underestimated from 9 May 1998, especially for the
exact computation (Figure 6).

Figure 4. Examples of wave spectra. (a) Frequency spectrum E(w) and (b) normalized directional
distribution D(w, q) (�100) from the exact computation. (c) same as Figure 4a but from the DIA, and
(d) same as Figure 4b but from the DIA.
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6.2. Comparison of Directional Distributions

[42] Figure 8 shows directional distributions D(q) =
D(wB, q) at 2 JST on 27 April and 0 JST on 27 April,
when wind speeds are large (Figure 5c), and wind-wave
signal might dominate over any background swell. The
model-predicted directional distribution D(q) from the
DIA is closer to the radar-estimated directional distribution
than that from the exact computation in Figure 8a. The
directional distribution D(q) from the exact computation is
narrower than radar-estimated directional distribution. The
difference between radar-estimated directional distribution
from the two-parameter model and that from the four-
parameter model is not so large in Figure 8a.
[43] The model-predicted directional distribution D(q)

from the DIA is close to the radar-estimated directional
distribution using the two-parameter model in Figure 8b.
The difference of radar-estimated directional distributions in
Figure 8b is larger than that in Figure 8a. The pair of the
best agreement between radar-estimated directional distri-
butions and model-predicted directional distributions
changes with time.
[44] Figure 9 shows examples of the time series of the

normalized directional distribution D(q) = D(wB, q). The
area-averaged radar-estimated directional distributions
are shown in Figures 9a and 9b, and are expressed by
equation (5). The wave model-predicted directional distri-
butions are estimated on the basis of predicted wave
spectrum F(w, q) by dividing frequency spectrum E(w).,
i.e., D(q) = F(wB, q)[E(wB)]

�1.
[45] The examples of the model-predicted directional

distributions shown in Figures 9c and 9d are those for aw =
1.4 in equation (32). The value of aw = 1.4 lies between aw =
1.3 and aw = 1.5: The aw = 1.3 is the optimal value of aw to
predict wave height using the DIA (section 6.1, Figure 7) and
aw = 1.5 is the optimal value of aw to predict wave height
using the exact computation (section 6.1, Figure 7).
[46] The radar-estimated area-averaged directional dis-

tributions D(q) for the two-parameter model (L = 1 in
equation (5)) are broader than those for the four-
parameter model (Figures 9a and 9b). Even in the four-
parameter model, most of the directional distributions are
unimodal (Figure 9b). The directional distributions are not
symmetric with respect to the mean direction in the four-
parameter model. It has been shown that the AIC
(Akaike’s Information Criterion) is useful in selecting
the model function [Hisaki, 2004]. The four-parameter
model is more accurate to describe directional distribu-
tions based on the AIC. The directional distributions D(q)
are accurately predicted by the wave model, and those
from the exact computation (Figure 9c) are narrower than
those from the DIA (Figure 9d). Because the directional
distributions are not symmetric with respect to the mean
direction, the directional distribution in the two-parameter
model (L = 1 in equation (5)) are broader than that in the
four-parameter model. However, it is difficult to discern a
more useful parameterization for predicting directional
distributions from exact computation or from the DIA
shown in Figure 9. The quantitative evaluation of the
directional distribution comparison will be described by
comparing the first- and the second-order moments of
directional distributions.

Figure 5. Time series of (a) wave heights at Kyan (thin
solid line: Ky in Figure 2) and Nakagusuku (thin dotted
line: Ng in Figure 2) and 26�N, 128�E (thick solid line: P in
Figure 2); (b) same as Figure 5a but for wave periods;
(c) hourly wind speeds at Itokazu (thin dotted line: I in
Figure 2), and 26�N, 128�E (thick solid line: P in Figure 2);
and (d) wind directions at I (qI: black circle) and P (qW: thin
dotted line), and wave directions at P (qS: thick solid line).
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6.3. First-Order Moment

[47] Figure 10 shows a comparison between area-
averaged radar-estimated wave direction with respect to
the wind direction (qmr� qI) and wavemodel-predicted mean
wave direction with respect to the wind direction at station I
(qmp�qI).Note that the correlationof theofdirection values is
dependent on how they are measured, because direction
values are determined by the measurement method: The
direction value is determined from the 0� direction and in
terms of how the positive value of the direction is defined. In
the example of Figures 10a and 10d, the eastward direction is
0� and the northward direction is 90�.
[48] If the short-wave directions with the Bragg wave-

length are changed simultaneously with the change of wind
direction, the correlation between area-averaged radar-
estimated mean wave directions with respect to wind
directions and wave model-predicted mean wave directions
with respect to wind directions (rc(qmp � qI, qmr � qI))
would be low. If the wave direction change associated with
a sudden wind shift can be reproduced, the correlation
rc(qmp � qI, qmr � qI) would be high. The comparisons
are summarized in Figure 11. The RMS differences
(Dr(qmp, qmr)) between the model-predicted and the radar-
estimatedwave directions for the four-parameter model (L= 2
in equation (5)) are smaller than those for the two-parameter
model (L = 1 in equation (5)). The correlations between the

radar-estimated short-wave directions and the predicted
short-wave directions using the exact computation are
higher than those from the DIA. The RMS difference
between radar-estimated short-wave directions and model-
predicted short-wave directions using the exact computation
is smaller than the RMS difference between wind directions
at station I and radar-estimated short-wave directions at the
closest grid point to the station I [Hisaki, 2002], although
the radar-estimated short-wave directions shown in
Figure 10 are area-averaged short-wave directions.
[49] Many of the outliers in the scatter diagram plotting

wind directions at station I and radar-estimated short-wave
directions are related to shifts in wind direction [Hisaki,
2002, Figure 5]. Some outliers have been removed from
Hisaki’s [2002] Figure 5. The number of outliers in the
scatter plot are decreased in Figure 10 compared with
Hisaki’s [2002] Figure 5.

6.4. Second-Order Moment

[50] Figure 12 shows a the comparison between the area-
averaged radar-estimated second-order moment of short-
wave directional distribution (sqr = sq(wB)) and the
predicted directional distribution (sqp = sq(wB)), where the
second-order moment of the short-wave directional dis-
tribution is calculated from equation (10). The predicted
second-order moment of short-wave directional distribution

Figure 6. (a) Time series of observed significant wave heights at Kyan (thin solid line) and at Nakagusuku
(thin dotted line) and predicted significant wave heights from the exact computation for aw = 1.4. (b) Scatter
diagram between wave heights at Nakagusuku and significant wave heights from the exact computation.
(c) Same as Figure 6a but for the DIA. (d) Same as Figure 6b but for the DIA.
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(sqp) using the exact computation is smallest in Figures 12a
and 12d, which shows that the predicted directional
distribution from the exact computation is the narrowest.
[51] The radar-estimated second-order moments of short-

wave directional distributions (sqr) based on the four-
parameter model (L = 2 in equation (5)) are seen to be
correlated with model predicted second-order moments
(sqp) in both Figure 12c (exact computation) and Figure 12f
(DIA). On the other hand, the radar-estimated second-order
momentsofshort-wavedirectionaldistributionsusingthetwo-
parametermodel (L=1inequation(5))areseen tobecorrelated
with model predicted second-order moments (sqp) in neither
Figure 12b (exact computation) nor Figure 12e (DIA).
[52] In order to investigate the effect of the swell on the

short-wave direction, the observation period is divided into
two categories: One is referred to as ‘‘swell time’’ and
another period is referred to as ‘‘wind-wave time.’’ The wind-
wave time is the time within 12 hours of jqS � qWj � 45� in
Figure 5d, where qS and qW are JMA-analyzed wave direc-
tions and wind directions, respectively. Otherwise the time is
referred to as swell time.
[53] Figure 13 shows the summary of a comparison

between the radar-estimated second-order moments of
short-wave directional distributions (sqr) from the four-
parameter model (L = 2 in equation (5)) for various aw in
equation (32).

[54] Although the correlations between radar-estimated
second-order moments and model-predicted second-order
moments (rc(sqr, sqp)) using the exact computation are
higher than those from the DIA, the RMS differences
Dr(sqr, sqp) between them are larger for the exact
computation. The predicted second-order moments from
the exact computation are smaller than the radar-estimated
second-order moments. The correlation rc(sqr, sqp) for the
swell time is significantly larger than that for the wind-wave
time, because the second-order moments in the swell time is
larger than those in the wind-wave time.

Figure 7. Comparisons of predicted wave heights from the
exact computation and the DIA with observed wave heights
at Kyan and Nakagusuku for various aw in equation (32).
(a) RMS difference Dr(Hk, Hp) for the exact computation
(thick solid line),Dr(Hn, Hp) (thick dotted line) for the exact
computation, Dr(Hk, Hp) for the DIA (thin solid line), and
Dr(Hn, Hp) (thin dotted line) for the DIA. (b) Same as Figure
7a but for correlation coefficients.

Figure 8. Radar-estimated normalized directional distri-
butions D(q) = D(wB, q) from the two-parameter model
(thick solid line) and from the four-parameter model (thick
dotted line), and model-predicted D(q) from the exact
computation (thin solid line) and from the DIA (thin dotted
line) for aw = 1.4 at (a) 2 JST on 27 April 1998 and (b) 0 JST
on 7 May 1998.
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[55] Wyatt et al. [1997] compared radar-estimated direc-
tional short-wave distributions (second-order moments)
with in situ observations. Although the correlation coeffi-
cient between them was not shown, the plots of radar-
estimated directional short-wave distributions and in situ
observations in the scatter diagram were scattered as shown
in Figure 12.
[56] Figure 14 shows relationships between normalized

Bragg frequencies by peak frequencies (wB/wm) and
second-order moments of short-wave distributions. The
second-order moments of unimodal distributions by
Mitsuyasu-Hasselmann type (cos2s((q � b1)/2) form, where
s is given by equation (31) [Mitsuyasu et al., 1975;
Hasselmann et al., 1980]) and by Donelan-type (sech2(b
(q � b1)) form, where b is given by Donelan et al. [1985])
are also shown in Figure 14. The Donelan-type empirical
equation is extended to w/wm� 1.6 (log(w/wm)� 0.47).
[57] Figures 14a and 14b shows relationships between

normalized Bragg frequency by peak frequencies and the

second-order moments of short-wave distributions (sqp)
predicted from the exact computation and the DIA,
respectively. The peak radian wave frequencies wm in
Figures 14a and 14b are also predicted from the exact
computation and the DIA, respectively. The second-order
moments become larger as higher wB/wm, which
are consistent with Mitsuyasu-Hasselmann-type and
Donelan-type directional distributions. However, the plots
of log(wB/wm) and sqp in Figures 14a and 14b are scattered
compared with Figure 4, because winds are not stationary.
In particular, plots in the swell time (white circles (�) in
Figure 14) are scattered. The values of the second-order
moments (sqp) predicted from the DIA are closer to those
from Mitsuyasu-Hasselmann-type and Donelan-type direc-
tional distributions than those predicted from the exact
computation.
[58] Figures 14c and 14d show relationships between

normalized Bragg frequency by predicted peak frequencies
(wB/wm) and the radar-estimated second-order moments of
short-wave distributions (sqr) from the two- and four-
parameter models, respectively. The peak wave frequencies
wm are predicted from the exact computation: The difference
between wm from the exact computation and wm from the
DIA is small. The tendency that the second-order moments
become larger as higher wave frequencies can be seen in
both Figures 14c and 14d. The second-order moments
derived from Mitsuyasu-Hasselmann-type and Donelan-
type directional distributions are closer to values of the sqr
estimated from the four-parameter model (Figure 14d) than
those from the two-parameter model (Figure 14c). The plots
in Figures 14c and 14d are scattered. Some second-order
moments in the swell time are large in Figures 14c and 14d
(white circles (�)). Most of the cases that radar-estimated
second-order moments sqr are much larger than second-
order moments derived from Mitsuyasu-Hasselmann-type
and Donelan-type directional distributions are in the swell
time because of wind shifts.

7. Horizontal Variability

7.1. Gridded Wave Parameters

[59] In section 6, the radar-estimated short-wave direc-
tional distributions were obtained from area-averaged short-
wave directional parameters. The area-averaged short-wave
parameters were estimated from many Doppler spectra on
radial grids as seen in Figure 2 (black circles in Figure 2).
These wave parameters were estimated by seeking the
minima of Lg (equation (6)) as explained in section 2. The
relationship between the model-prediction error and
the homogeneity of wave field is explored.
[60] The wave parameters s and b1 without area averag-

ing for the two-parameter model (L = 1 in equation (5))
could be estimated on the regular grid points by solving
equation (4) as explained in section 2. The mean short-
wave direction at the grid point is qm = b1, and the second-
order moment at the grid point is calculated from s using
equation (10).
[61] The short-wave parameters in the two-parameter

model estimated on each grid point are referred as the
gridded mean wave direction (gridded qmr = qm(wB)) and
gridded second-order moment (gridded sqr = sq(wB)). The
meanings of the area-averaged gridded sqr and area-

Figure 9. Normalized directional distribution D(q) =
D(wB, q) (a) from radar estimation and the two-parameter
model (L = 1 in equation (5)), (b) from radar estimation and
the four-parameter model (L = 2 in equation (5)),
(c) predicted from the exact computation for aw = 1.4,
and (d) same as Figure 9c but from the DIA.
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Figure 10. (a) Time series of model-predicted short-wave directions with respect to qI (degrees) for
the exact computation and aw = 1.3 (black circle), radar-estimated short-wave directions with respect to qI
from the two-parameter model (thin solid line), and radar-estimated short-wave direction with respect to
qI from the four-parameter model (thick dotted line), where qI is the wind direction at the station I in
Figure 2. (b) Scatter diagram between model-predicted short-wave directions with respect to qI (qmp�qI)
for the exact computation and aw=1.3 and radar-estimated short-wave directionswith respect to qI (qmr� qI)
from the two-parameter model, (c) same as Figure 10b but radar-estimated short-wave directions are for
the four-parameter model, (d) same as Figure 10a but model-predicted short-wave directions are for the
DIA, (e) same as Figure 10b but model-predicted short-wave directions are for the DIA, and (f) same as
Figure 10c but model-predicted short-wave directions are for the DIA.
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averaged sqr are different from each other. The former is
explained in section 7.2, and the latter is discussed in
section 6.4. The area-standard deviation of gridded sqr, the
area-averaged gridded sqr, and the area-averaged sqr also
have different meanings.

7.2. Index of Horizontal Variability

[62] Figure 15a shows a time series of area-averaged
gridded sqr = sq(wB) (radar-estimated second-order moment
of short-wave directional distributions) on regular grid
points (crosses in Figure 2). The gridded sqr on the grid
points are averaged in the HF radar observation area at each
2-hour interval. Figure 15b shows the area-standard
deviations of gridded sqr estimated using HF radars: The
standard deviations in the HF radar observation area are
calculated using gridded sqr on grid points at 2-hour
intervals. Similarly, the area-standard deviations of gridded
qmr (radar-estimated first-order moment of short-wave
directional distributions) can be calculated at 2-hour
intervals. Figure 15c shows a scatter diagram between the
area-standard deviations of gridded qmr and the area-
standard deviations of gridded sqr.

[63] The time series of the area-averaged values of
gridded qmr estimated using the HF radar is indicated in
Figure 7 in a previous paper [Hisaki, 2002], and it is not
shown here. The area-standard deviations of gridded qmr
were large when the winds or short-waves significantly
changed their directions [Hisaki, 2002]. The time series of
the area-averaged values of gridded sqr (Figure 15a) are
similar to radar-estimated area-averaged sqr from the two-
parameter model (Figures 12a and 12d, thin solid line). The
area-averaged values of gridded sqr are estimated by area-
averaging the gridded sqr estimated on each regular grid
point. The radar-estimated values of area-averaged sqr are
estimated directly using all of the first-order ratios (ri in
equation (4)) employing the method explained in section 2.
[64] The temporal variation of standard deviations of

gridded sqr at each 2-hour interval ranges from 5� to 15�
in Figure 15b. There are no correlations between the area-
averaged values of gridded sqr (Figure 15a) and the
area-standard deviations of gridded sqr (Figure 15b). The
area-standard deviations of gridded qmr are large when the
standard deviations of gridded sqr are large (Figure 15c).
They are correlated with a correlation coefficient of 0.61.
Because of this correlation, it is possible to use only the area-
standard deviation of sqr as an index of the horizontal
variability of the short-wave directional distributions in the
HF radar observation area.

7.3. Relationship Between Horizontal Variability
and Model-Prediction Error

[65] Figure 16 is the scatter diagram between area-
standard deviation of gridded sqr and area-averaged
jsqr � sqpj for aw = 1.4 in equation (32). The area-standard
deviation of gridded sqr is the index of the horizontal
variability. The value of jsqr � sqpj is the difference
between the radar-estimated second-order moment and the
model-predicted second-order moment. The value of sqr in
area-averaged jsqr � sqpj is obtained from the four-
parameter model. This figure shows the relationship
between horizontal variability of short-wave fields and the
model-prediction error of second-order moments. In many
cases, the large values of area-averaged jsqr � sqpj are
associated with horizontal variabilities of short-wave fields:
Both the area-standard deviation of gridded sqr (horizontal
axis in Figure 16) and area-averaged jsqr � sqpj (vertical
axis in Figure 16) are large. In this example (aw = 1.4), these
cases are evident in the exact computation (Figure 16a).
However, cases in which the large values of area-averaged
jsqr � sqpj are associated with large area-standard
deviations of gridded sqr are not evident in the exact
computation for other values of aw.
[66] The correlations between the model-prediction errors

of wave heights (jHp � Hkj) and model-prediction errors of
short-wave directional distributions (jsqr � sqpj) are
investigated, where Hp is the model-predicted wave
height and Hk is the wave height observed at station Ky
in Figure 2. There are almost no correlations between them.
For example, the correlation coefficient between jHp � Hkj
and jsqr � sqpj is rc(jHp � Hkj, jsqr � sqpj) = 0.07, where
sqp and Hp are respectively the model-predicted second-
order moment and wave height from the exact computation
for aw = 1.4 in equation (32), and sqr is the radar-estimated
second-order moment from the four-parameter model. The

Figure 11. Comparisons of predicted short-wave direc-
tions with radar-estimated short-wave directions for various
aw. (a) RMS difference (Dr(qmp, qmr)) between model-
predicted first-order moments (qmp) and radar-estimated
first-order moments (qmr) for the exact computation and the
two-parameter model (thick solid line), for the exact
computation and the four-parameter model (thick dotted
line), for the DIA and the two-parameter model (thin solid
line), and for the DIA and the four-parameter model (thin
dotted line). (b) Same as Figure 11a but for correlation
coefficients.
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correlation coefficient rc(jHp � Hkj, jsqr � sqpj) is 0.17,
where sqp and Hp are from the DIA and sqr is from the four-
parameter model. The main error source of the model wave
height prediction differs from that of the model’s short-wave

distribution prediction. The wave height prediction error is
due mainly to the omission of the propagation term, because
the swell propagation is not considered. The short-wave
directional distribution prediction error is due mainly to the

Figure 12. (a) Time series of predicted second-order moments of short-wave directional distributions
(sqp = sq(wB)) for the exact computation and aw = 1.3 (black circle), radar-estimated area averaged radar-
estimated second-order moments (sqr = sq(wB)) from the two-parameter model (thin solid line), and
radar-estimated second-order moments from the four-parameter model (thick dotted line). (b) Scatter
diagram between sqp (horizontal axis) for the exact computation and aw = 1.3 and sqr (vertical axis)
from the two-parameter model. White circles indicate swell time and black circles indicate wind-wave
time. (c) Same as Figure 12b but for the four-parameter model, (d) same as Figure 12a but for the DIA,
(e) same as Figure 12b but for the DIA, and (f) same as Figure 12c but for the DIA.
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error of winds and the parameterization of source functions
as such Sin (equation (11)) and Sds (equation (16)).

8. Discussion and Conclusion

[67] The short-wave directional distributions estimated by
the HF radar are compared with the model predictions using
both the exact computation of Snl(w, q) and the DIA. The
comparisons in this study are as follows: (1) comparison of
predicted wave spectra from the DIA and those from the
exact computation, (2) comparison of radar-estimated short-
wave directional distributions of the two-parameter model
with those of the four-parameter model, (3) comparison
between radar-estimated first-order moments of short-
wave directional distributions and those predicted by
wave model for both the DIA and the exact computation,
and (4) comparison between radar-estimated second-order
moments of short-wave directional distributions and those
predicted from wave model for both the DIA and the
exact computation.
[68] Because it is not feasible to compute equation (1) for

the exact computation, wave spectra are predicted using
equation (2) for both the exact computation and the DIA.

In addition, the wind data on the sea surface is not
available, and wind inputs are expressed as equation (32)
for various aw.
[69] The assumptions of these calculations are as follows:

Wave fields are almost statistically homogeneous in the HF
radar observation area. Wind waves rather than the swells
propagating from the distance are dominant.
[70] The former assumption is related to the omission

of the propagation term in equation (1). The latter
assumption is related to the prediction of the source
function St in equation (1). The validities of the assump-
tions are investigated.
[71] For the exact computation, methods to compute the

nonlinear interaction source function Snl(w, q) and deriva-
tives with respect to the wave spectrum @Snl(w, q)/@F(wp,
qp) are developed. The numerical integration using this
method is stable. The effect of the singularities at S0 = 0
in equation (A6) and the effect of the low direction
resolution (M = 24) on the numerical integration can be
reduced.
[72] The accuracy of wave heights predicted using the

DIA is greater than that derived from the exact computation,
because the parameters in the DIA such as lnl in
equation (26) and C0 in equation (28) along with the
parameterizations of Sin and Sds are tuned to predict wave
heights. The predicted wave directional distributions deter-
mined using the exact computation are narrower than those
obtained by the DIA at higher frequencies.
[73] The intercomparison between radar-estimated direc-

tional distributions and the model predictions shows that the
four-parameter model for radar estimation is more effective
than the two-parameter model.
[74] It has also found that the four-parameter model is

more effective than the two-parameter model not only on
the basis of the AIC [Hisaki, 2002], but also on the basis of
a comparison of these models in terms of their predictions.
The short-wave directional distributions are not symmetric
with respect to the mean direction; therefore, the directional
distributions described by the two-parameter model (L = 2
in equation (5)) are broader than those obtained by the four-
parameter model.
[75] The first- and the second-order moments of radar-

estimated short-wave directional distributions are compared
with those predicted using the exact computation and the
DIA. The model predicted first-order moments with respect
to the wind directions are closely correlated with first-order
moments estimated using HF radar with respect to wind
directions. This result shows that the change in short-wave
direction associated with a sudden shift of wind can be
reproduced in both the exact computation and the DIA.
Georges et al. [1993] estimated wind directions associated
with a moving hurricane using HF radar, although the time
lag of the short-wave response to a wind shift was not
considered. The incorporation of the wave prediction model
for estimating wind direction through the use of HF radar is
the next subject of this study, because the time lag of the
short-wave response to a wind shift can be considered.
[76] The model-predicted second-order moments of short-

wave directional distributions are also correlated with those
estimated using HF radar. The wind directions are time
variable, and the short-wave directional distributions are
asymmetrical with respect to wind direction. The correlation

Figure 13. Comparisons of predicted short-wave second-
order moments for the four-parameter model with radar-
estimated short-wave second-order moments for various aw.
(a) RMS difference Dr(sqp, sqr) for the exact computation
(thick solid line), for the exact computation and the wind-
wave time (thick dotted line), for the exact computation and
the swell time (thin solid line), for the DIA (thin dotted
line), for the DIA and the wind-wave time (thin dashed
line), and for the DIA and the swell time (thick dashed line).
(b) Same as Figure 13a but for correlation coefficients.
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for the swell time is larger than that for the wind-wave time.
If the change of wind direction is not significantly large, the
short-wave direction changes smoothly. If the change of
wind direction is large, the peak of the short-wave direc-
tional distribution in the new wind direction grows, while
the old peak of the short-wave directional distribution
decays [Young et al., 1987]. The result in which model-
predicted second-order moments of short-wave directional
distributions are correlated with those estimated using HF
radar implies that these transient short-wave directional
distributions associated with changes in wind direction
can be reproduced by the model.
[77] The short-wave directional distributions predicted by

the exact computation are narrower than those by both the
DIA and the radar. The correlation of radar-estimated
second-order moments with those predicted by the exact
computation is higher than that with those predicted by the

DIA. However, the RMS difference between the radar-
estimated second-order moments and those predicted by
the model (Dr(sqr, sqp)) using the exact computation is
larger than that from the DIA.
[78] The relationship between horizontal variabilities and

the predictions of short-wave directional distributions were
investigated. There is not a clear relationship between them.
Although there may be some cases in which prediction
errors are associated with horizontal variabilities, horizontal
variability is not a primary source of error. The omission of
the propagation term is not a main source of prediction error
in the short-wave directional distribution.
[79] The effect of the swell on the prediction error is also

investigated. The relationship between swells and prediction
errors in short-wave directional distributions is also unclear.
The main error source of the short-wave distribution pre-

Figure 14. Scatter diagram between log(wB/wm) and second-order moments sq. (a) Predicted from the
exact computation, and (b) predicted from the DIA. (c) Peak radian frequencies wm predicted from
the exact computation and sq, the radar-estimated second-order moments from the two-parameter
model. (d) Same as Figure 14c but from the four-parameter model. White circles indicate swell time and
black circles indicate wind-wave time. Thick solid line, sq as a function of log(w/wm) by Mitsuyasu-
Hasselmann type distribution (equation (31)); thick dotted line, sq as a function of log(w/wm) by Donelan-
type distribution; thin solid line, regression line.
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diction differs from that of the model’s wave height predic-
tion. The swell is not a primary source of error.
[80] The result that predicted wave parameters from the

DIA is better than those from the exact computation does
not show that the DIA is better than the exact computation.
The other source terms (Sds and Sds) in the WAM model are
tuned to give good results when the DIA is used. We must
improve the other source terms if we use the exact compu-
tation or other parameterization of Snl for wave prediction.
[81] In this study, it is assumed that wind over sea surface

is a constant multiple of the inland wind speed for an entire

period. Therefore the wave prediction should be done using
wind data over sea surface in the next study. It is noted that
the temporal resolution of wind data is important for
predicting second-order moments of short-wave directional
distributions, because short-wave directional distributions
vary with winds quickly.

Figure 15. (a) Time series of area-averaged values of
gridded sqr (radar-estimated second-order moments of
short-wave directional distributions) on regular grid points
(crosses in Figure 2), (b) area-standard deviations of gridded
sqr estimated by HF radar, and (c) scatterplot between area-
standard deviations of gridded qmr (radar-estimated first-
order moments of short-wave directional distributions:
horizontal axis) and area-standard deviations of gridded
sqr (vertical axis).

Figure 16. (a) Scatter diagram between area-standard
deviation of gridded sqr (radar-estimated second-order
moments of short-wave directional distributions) from the
two-parameter model (horizontal axis) and area-averaged
jsqr � sqpj (vertical axis) from the four-parameter model
and exact computation. (b) Same as Figure 16a but from the
DIA, where sqp is the model-predicted second-order
moments.
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[82] The correlation of the second-order moments in the
swell time is significantly larger that in the wind-wave time,
because of the broad wave directional distribution in the
swell time. The effects of the swell on the short-wave
directional distribution are smaller than prediction errors
due to the parameterization of the source function.
[83] The investigation of the effect of the parameteriza-

tion of Sin and Sds on short-wave directional distribution is
the next subject of this study. The improvement of the
model from equation (2) to equation (1) should be explored.

Appendix A: Numerical Computation of the
Four-Wave Interaction

[84] The method used to compute four-wave interaction is
based on that reported by Komatsu and Masuda [2001]. The
source function of the nonlinear interaction is

Snl w4; q4ð Þ ¼ w4k4

Cg4

Z Z Z
dk1dk2dk3dwdk Hasselmann; 1962½ �;

G N1N2 N3 þ N4ð Þ � N3N4 N1 þ N2ð Þ½ �; ðA1Þ

where dw and dk are delta functions corresponding to the
resonance conditions of quadruplets as

w1 þ w2 ¼ w3 þ w4 � wað Þ ðA2Þ

k1 þ k2 ¼ k3 þ k4 � kað Þ; ðA3Þ

where ki = (ki cos qi, ki sin qi) (i = 1, ..,4), wi
2 = gki, Ni =

F(wi, qi)Cgi/(wiki) (i = 1, ..,4) are the wave action densities,
Cgi = @wi/@ki = g/(2wi) (i = 1, 2, 3, 4) are wave group
velocities, and G = G(w1, w2, w3, w4, q1, q2, q3, q4, g) is

G ¼ 9pg4D2

4w1w2w3w4

: ðA4Þ

The functionD =D(k1, k2, k3, k4) is given by equations (B1)
and (B2) of Herterich and Hasselmann [1980].
[85] The integration range of equation (A1) can be w1� w2

for symmetry with respect to k1 and k2 in equation (A1).
Furthermore, integration (A1) was conducted for

w1 � w3 � w4 � w2: ðA5Þ

The integration (A1) for the integration range (A5) and
q34 � 0 is

T w4; q
j2ð Þ
4

� 	
¼ w4k4

Cg4

Z 0

�p
dq34

Z 0

�1
d~W34

Z p

qab
dqa1

XNj1

j1¼1

w3k1k3

Cg1Cg3

G

S0
N

j1;j2ð Þ
1234

� �

¼ 8w23
4 g�10

Z 0

�p
dq34

Z 0

�1
d~W34

Z p

qab
dqa1

XNj1

j1¼1

Kb
~W34; qa1; q34
� �

N
j1 ;j2ð Þ

1234 ; ðA6Þ

where

S0 ¼
����1þ Cg1

Cg2

@k2
@k1

���� ¼
����1þ Cg1

Cg2

k1 � ka cos qa1ð Þ½ �k�1
2

����; ðA7Þ

N
j1 ;j2ð Þ

1234 ¼ ~N
j1ð Þ
1

~N
j1ð Þ
2

~N
j2ð Þ
3 þ ~N

j2ð Þ
4

� 	
� ~N

j2ð Þ
3

~N
j2ð Þ
4

~N
j1ð Þ
1 þ ~N

j1ð Þ
2

� 	
;

ðA8Þ

~N
jð Þ

i ¼ N wi; q
jð Þ

i

� 	
;

q jð Þ
i ¼ qa þ 3� 2jð Þqai i ¼ 1; . . . ; 4; j ¼ 1; 2ð Þ ðA9Þ

qai ¼ qi � qa; i ¼ 1; 2; 3; 4ð Þ q34 ¼ q3 � q4;

~W34 ¼ log w3ð Þ � log w4ð Þ; ðA10Þ

Kb
~W34; qa1; q34
� �

¼ ~w3
1~w

4
3

~G

S0
; ðA11Þ

~G ¼ ~G ~w14; ~w24; ~w34; qa1; qa2; qa3; qa4ð Þ

¼ g4

w12
4

G ¼ G ~w14; ~w24; ~w34; 1; qa1; qa2; qa3; qa4; 1ð Þ; ðA12Þ

~wi4 = wi/w4 (i = 1, 2, 3, 4), and ka and qa are defined from ka =
(ka cos qa, ka sin qa) and equation (A3). The normalized
function ~G is estimated from G (equation (A4)) by
replacing wi, ki, qi and g with ~wi4, ~ki4 = ~wi4

2 , qai (i = 1,
2, 3, 4), and 1, respectively. The directions of vectors ki (i = 1,
2, 3, 4) with respect to the vector ka are qa1� 0, qa2� 0, qa3�
0, and qa4 � 0, respectively. The integration range with
respect to qa1 in equation (A6) is

qab ¼ Max jqa3j; qbð Þ; ðA13Þ

where

qb ¼ arccos
ka

2k1

� �
; for g < 0; ðA14Þ

qb ¼ 0; for g � 0; ðA15Þ

g ¼ gkað Þ1=2

wa

� 2�1=2: ðA16Þ

The number of mirror images of vectors k3 and k4 (k1
and k2) with respect to vector ka in quadruplets is Nj2 = 1
(Nj1 = 1) for qa3 = 0 (qa1 = 0) or w1 = w3. In other cases, Nj2 =
2 (Nj1 = 2).
[86] The integration range (A5) differs from that

described by Komatsu et al. [1993]. The singularities at
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S0 = 0 (w1 = w2 and qa1 = 0) in equation (A6) can be avoided
for (A5) [Komatsu and Masuda, 2001].
[87] The wave radian frequencies and directions are

discretized as

w nð Þ ¼ wminr
n�1
w ; n ¼ 1; ::;Nmaxð Þ; ðA17Þ

q mð Þ ¼ �pþ 2p
M

m� 1ð Þ; m ¼ 1; ::;Mð Þ; ðA18Þ

where Nmax is the number of radian wave frequencies, rw =
(wmax/wmin)

1/(Nmax�1) is the frequency increment, M is the
number of directions, and wmin and wmax are the minimum
and maximum radian frequencies, respectively. For the
numerical computation, equation (A6) is discretized as

T w4; q
j2ð Þ
4

� 	
¼
XM=2þ1

m34¼1

X0
n34¼�N34

XM
m1a¼M1l

XNj1

j1¼1

dT w4; q
j2ð Þ
4

� 	

’
XLq
lq¼1

XNj1

j1¼1

dT w4; q
j2ð Þ
4

� 	
; ðA19Þ

dT w4; q
j2ð Þ
4

� 	
¼ 8g�10 2p

M

� �2

log rwð Þw23
4 Kb

~W34; qa1; q34
� �

N
j1 ;j2ð Þ

1234 ;

ðA20Þ

where n3 and n4 are the radian frequency index numbers of
w3 and w4, respectively, and w3 = w(n3), w4 = w(n4)
(equation (A17)), n34 = n3 � n4, and d~W34 = (n3 � n4)
log(rw) = n34 log(rw). The numbers m1a and m34 are
the direction index numbers of qa1 and q34, respectively, and
qa1 = q(m1a) and q34 = q(m34) (equation (A18)). j2 = 1, 2
denotes mirror image quadruplets for vector k3 and k4, and
j2 = 1 for q34 � 0 and qa3 � 0. The number M1l in equation
(A19) is determined on the basis of equation (A13), and the
number N34 is the parameter which determines the
maximum value of w4/w3 for the numerical integration of
equation (A6) as max(w4/w3) = rw

N34. The number Lq is the
total number of quadruplets for the numerical integration,
and lq is the index number of the quadruplets. The indices
m34, n34, and m1a are functions of lq. To reduce the
necessary computation, the quadruplets of jKb(~W34, qa1,
q34)j < Kmin, where Kmin is the minimum threshold of the
kernel, are excluded in the summation of the last term in
equation (A19).
[88] The normalized wavenumber ~k34 is determined

from ~W34 and ~k44 = 1, and the normalized radian
frequency is ~wa4 = ~k34

1/2+1 (equation (A2)). The normal-
ized wavenumber ~ka4 = ka/k4 can be calculated from ~k34,
~k44 = 1, q34, and equation (A3). The directions qa3 and
qa4 = qa3 � q34 are calculated from ~ka4, ~k34 and ~k44 = 1.
The normalized wavenumber ~k14, ~k24 and direction qa2
can be calculated from equations (A2) and (A3) for a
given qa2. Once we calculate the integral kernel Kb(~W34,
qa1, q34) (equation (A11)) for m34, n34 and m1a, we can
relate m34, n34 and m1a to lq. It is not necessary to
recompute Kb(~W34, qa1, q34) in each step.

[89] Thewave spectral values are given onwave frequency-
direction grids as equations (A17) and (A18). While (w4, q4)
and (w3, q3) are on the wave frequency-direction (w � q)
grid points ((w4, q4) = (w(n4), q(m4)) and (w3, q3) = (w(n3),
q(m34 + m4))), (w2, q2) and (w1, q1) are not on the
wave frequency-direction grid points. The spectral values
at (wi, qi

(j)) are evaluated by the bilinear interpolation in
log(w) and q using the spectral values of the wave frequency-
direction (w � q) grid points as

F wi; q
jð Þ

i

� 	
¼
Xmw¼1

mw¼0

Xnw¼1

nw¼0

Ws mw; nw;wi; q
jð Þ

i

� 	
F w ni þ nwð Þ;ð

q m
jð Þ

i þ mw

� 		
; ðA21Þ

where ni and mi
(j) satisfy

w nið Þ � wi < w ni þ 1ð Þ; q m
jð Þ

i

� 	
� q jð Þ

i < q m
jð Þ

i þ 1
� 	

ðA22Þ

((equations (A17) and (A18)), and Ws(mw, nw, wi, qi
(j)) is

the weight for the bilinear interpolation. The weight
Ws(mw, nw, wi, qi

(j)) (mw, nw = 0,1) is determined from wi,
qi
(j), and equations (A17) and (A18). The spectral values
for w > wmax are extrapolated according to the inverse 4th
power of the frequency.
[90] The integration range of equation (A6) is limited to

(A5) and �p � q34 � 0. The integration over the full
integration range (including w1 � w2 and �p � q34 � p) is
calculated as follows. In the loop of w4 and q4 (n4 and m4) of
the numerical computation, Ti

(j2)(w, q) = T(wi, qi
(j2)) (i = 1, 2,

3, 4) can be updated as

Ti w; qð Þ j2ð Þ�!T
j2ð Þ

i w; qð Þ þ dT j2ð Þ
i w; qð Þ; i ¼ 1; 2; 3; 4ð Þ; ðA23Þ

where

dT j2ð Þ
i w; qð Þ ¼ dT wi; q

j2ð Þ
i

� 	
; ðA24Þ

dT j2ð Þ w3; q3ð Þ ¼ dT w4; q
j2ð Þ
4

� 	
; ðA25Þ

dT w1; q
j2ð Þ
1

� 	
¼ dT w2; q

j2ð Þ
2

� 	
¼ �dT w4; q

j2ð Þ
4

� 	
; ðA26Þ

and dT(w4, q4
(j2)) is calculated from equation (A20) for j2 =

1, 2. At the end of the loop of w4 and q4 (n4 and m4), the
nonlinear source function is calculated by

Snl w; qð Þ ¼
X4
i¼1

XNj2

j2¼1

T
j2ð Þ

i w; qð Þ: ðA27Þ

[91] However, (w2, q2) and (w1, q1) are not on the
wave frequency-direction grid points. The values of Ti

(j2)(w,
q) = T(wi, qi

(j2)) at four (or two) w � q grid points
surrounding (wi, qi

(j2)) are updated by adding weighted
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values of dT(j2)(wi, qi). Equation (A23) is modified using
weights in equation (A21) as

T
j2ð Þ

i w; qð Þ�!T
j2ð Þ

i w; qð Þ þWs mw; nw;wi; q
j2ð Þ
i

� 	
dT j2ð Þ

i w; qð Þ;

i ¼ 1; 2; 3; 4ð Þ ðA28Þ

w ¼ w ni þ nwð Þ; q ¼ q m
j2ð Þ
i þ mw

� 	
; ðA29Þ

for wmin � w � wmax, where ni and mi
(j2) are determined

from (A22), nw and mw are 0 or 1, and dTi
(j2)(w, q) is

estimated from equations (A20) and (A24)–(A26). The
update equation (A28) is calculated for both j1 = 1 and j1 =
2, if the number of mirror images of vectors k1 and k2 with
respect to the vector ka in quadruplets (Nj1) is 2.
[92] The derivatives of the nonlinear source function with

respect to the wave spectrum can be calculated from
equation (A24) as

@ dT j2ð Þ
4 w nð Þ; q mð Þð Þ

n o
@F w np

� �
; q mp

� �� � ¼ Kc

X4
i¼1

@ ~N
j12 ið Þð Þ
i

@F w np
� �

; q mp

� �� � @N
j1;j2ð Þ

1234

@ ~N
j12 ið Þð Þ
i

;

ðA30Þ

@N
j1;j2ð Þ

1234

@ ~N
j1ð Þ
1

¼ ~N
j1ð Þ
2

~N
j2ð Þ
3 þ ~N

j2ð Þ
4

� 	
� ~N

j2ð Þ
3

~N
j1ð Þ
4 ; ðA31Þ

@N
j1;j2ð Þ

1234
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j1ð Þ
2

¼ ~N
j1ð Þ
1

~N
j2ð Þ
3 þ ~N

j2ð Þ
4

� 	
� ~N

j2ð Þ
3

~N
j2ð Þ
4 ; ðA32Þ

@N
j1;j2ð Þ

1234
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j2ð Þ
3
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j1ð Þ
1
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j1ð Þ
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j2ð Þ
4

~N
j1ð Þ
1 þ ~N
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2
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; ðA33Þ
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1234
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j2ð Þ
4
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j1ð Þ
1

~N
j1ð Þ
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j2ð Þ
3
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j1ð Þ
1 þ ~N

j1ð Þ
2
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; ðA34Þ

@ ~N
j12 ið Þð Þ
i

@F w np
� �

; q mp
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¼ g

2w2
i ki

Xmw¼1

mw¼0

Xnw¼1
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Ws mw; nw;wi; q
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i
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" #
; ðA35Þ

Kc ¼ 8g�10 2p
M

� �2

log rwð Þw23
4 Kb

~W34; qa1; q34
� �

; ðA36Þ

where j12(i) = j1 for i = 1, 2, j12(i) = j2 for i = 3, 4, d in
equation (A35) is the Kronecker’s delta defined as da

b = 1 for
a = b and da

b = 0 for a 6¼ b.
[93] The derivatives of the nonlinear source function with

respect to the wave spectrum are calculated by updating in

the same way as equation (A28) using equations (A24)–
(A26) and (A30)–(A36) in the loop of w4 and q4 (n4
and m4). Thus the derivatives of the nonlinear source
function with respect to spectral values are calculated as
equation (A27).
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