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Abstract

Classification of ocean data maps is important for analysis of ocean data.

Here, we compare Self-Organizing Map (SOM) analysis with cluster methods

such as the Ward method and K-means method. The HF (high-frequency)

radar surface current data east of Okinawa Island, Japan were used for the

comparison. There are two typical current patterns in the observation area:

a strong southward current and a clockwise eddy-like current pattern. The

classification results by the Ward method was similar to that by the SOM

analysis. SOM analysis was insensitive to the cut-off Empirical Orthogonal

Function (EOF) mode number for reducing the data dimensions and noise,

while the K-means method was the most sensitive to the EOF mode number.
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1. Introduction1

Ocean data such as currents, temperatures and salinities are functions2

of time and space. One of the important analyses for ocean data is the3

classification of physical features according to contour or vector patterns in4
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maps. Analysis of pattern classifications of maps is less common in physical5

oceanography than in with meteorology, although there are some studies of6

pattern classification in physical oceanography. For example, Harms and7

Winant (1998) classified surface current maps in the Santa Barbara Channel8

manually.9

It is useful to classify maps objectively. One of the methods of objec-10

tive classification is cluster analysis. The applications of cluster analysis to11

physical oceanography are fewer than those to meteorology. Cluster analysis12

is used in physical oceanography to divide two- or three-dimensional graphs13

or maps from multivariate data (e.g., Freeman et al. (2012); Hasegawa and14

Hanawa (2003); You (1997)) such as water type identification or remotely15

sensed data. However, the dimensions of the data are not as high as those16

of the data for map classification.17

Another method of objective classification is Self-Organizing Map (SOM)18

analysis (Kohonen (2001)). We also conducted SOM analysis. The philoso-19

phy behind the SOM and its application to remotely sensed oceanographic20

data are described in Richardson et al. (2003). SOM application to in-situ21

or remotely sensed ocean current data was reported in Liu and Weisberg22

(2005), Liu et al. (2006) and Liu et al. (2007). A review of SOM applications23

in oceanography and meteorology is provided in Liu and Weisberg (2011).24

One of the methods to extract spatial patterns in ocean data, which25

is often used in physical oceanography, is Empirical Orthogonal Function26

(EOF) analysis. The EOF method extracts identical spatial patterns in data,27

and time series of weights describe their evolution in time. It is possible to28

classify the spatial pattern from the time series of weights .29

2



There are some oceanographic studies that compare EOF with SOM (Liu30

and Weisberg (2005); Liu et al. (2006); Mau et al. (2007)). There are also31

some oceanographic studies which compare SOM analysis with cluster anal-32

ysis. For example, Camus et al. (2010) compared non-hierarchical cluster33

analysis with SOM. The analyzed data were wave parameters such as signif-34

icant wave height, mean period, and mean wave direction at a single obser-35

vation point, and the dimensions of the data were not very high. It is better36

to compare hierarchical cluster analysis with other classification methods if37

possible, because the dissimilarities of the maps from the dendrograms are38

more apparent.39

The dimensions of data for the classification of maps high: The dimen-40

sions of the data in each map are twice the number of data positions in the41

case of two-dimensional ocean currents. However, it is well known that doing42

cluster analysis in higher-dimensional space is more difficult because of the43

so-called ”curse of dimensionality” (e.g., Frédérique and Aires (2009)).44

EOF analysis is a simple method to reduce the dimensions of a data map.45

The observed data are reconstructed by the leading EOF time coefficients and46

eigenvectors. Therefore, the dimensions of the data map are the number of47

leading EOF modes.48

We have used surface current data obtained by HF (high-frequency: 3−49

30 MHz) radar for analysis. The observation area is the open ocean, and50

currents in the area are affected by mesoscale eddies. Some studies have51

used EOF analysis for HF radar surface current data (e.g., Kaihatu et al.52

(1998); Marmorino et al. (1999); Hisaki (2006)). A few studies have used53

SOM analysis for HF radar surface current data (e.g., Liu et al. (2007); Mau54
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et al. (2007)). There are no studies that have used cluster analysis for HF55

radar surface current data.56

The objective of this paper is to classify surface current patterns observed57

by HF ocean radar and to compare the various classification methods.58

Section 2 describes the current measurement by HF radar. The methods59

of the classification are also described in Section 2. Section 3 presents the60

results of the comparison. The results are discussed and conclusions are given61

in Section 4.62

2. Methods63

2.1. EOF and reduction of dimensions64

The EOF method is the same as that described in Kaihatu et al. (1998).65

The EOF method is also described in Hisaki (2006). We did not remove the66

mean current field as Kaihatu et al. (1998) did, because we also compare67

EOF eigenfunctions with classified currents by other methods.68

The reconstructed current at the time t and the position x is69

V(m)(x, t) =
NE∑
k=1

bk(t)Ψ(m), m = 1, 2 (1)

where (V(1), V(2)) is the reconstructed current, bk(t) is the time coefficient for70

the EOF mode k, and Ψ(m) = Ψ(m)(x) is the eigenfunction. The cut-off EOF71

mode number NE is less than 2Ng, where Ng is the number of positions. The72

dimensions of the data map were reduced from 2Ng to NE.73

2.2. Cluster analysis and SOM74

The Ward method was applied as a hierarchical cluster analysis, and the75

K-means method was applied as a non-hierarchical cluster analysis. The In-76
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ternational Mathematical Statistical Library (IMSL) was used for the cluster77

analysis.78

K-means clustering depends on the initial guess of the cluster centers. The79

initial guess of the cluster groups is based on the time series number, because80

the current maps are changed gradually. The initial guess of the cluster81

centers for each cluster group is based on the groups clustered according to82

time.83

SOM analysis evaluates the weight vectorsmi and the best-matching unit84

(BMU) ck (Equation (1) in Liu and Weisberg (2005) ), where i is the unit85

number and k is the time series number. The SOMmethod is described in Liu86

and Weisberg (2005) and Liu et al. (2006). The algorithm and parameters87

of the SOM method are described in Appendix A.88

2.3. Observation of surface current by HF radar89

The HF surface current data observed in 1998 were used for analysis.90

Figure 1 is the location of the radars and the observation area. The HF91

radars were located on the east coast of Okinawa (Ryukyu) Island, mapping92

the surface currents east of Okinawa Island.93

The observation area is close to the Ryukyu trench, where the water depth94

deepens rapidly with distance offshore. Therefore, the HF radar observation95

area can be characterized as the open ocean The water depths in most of the96

observation area are greater than 200 m (Figure 1). The mean currents in the97

observation area are small, and their variabilities are affected by mesoscale98

eddies, while currents in the west of the island are affected by the recirculation99

current of the Kuroshio (Hisaki and Imadu (2009)).100

The radar frequency was 24.515 MHz, and the Bragg frequency was fB =101
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0.505 Hz. The radar system was a phased array system. The range resolution102

of the radar was 1.5 km, and the beam resolution was 7.5◦. The HF ocean103

radar measured surface currents every 2 hours from shore sites at locations A104

(26◦ 7.19’ N, 127◦ 45.78′ E) and B (26◦ 18.63′ N, 127◦ 50.25′ E) in Figure 1.105

The details of the HF radar observation are described in Hisaki et al. (2001).106

The radial currents are interpolated on the grid points in Figure 1 with107

respect to time and space. The number of grid points was Ng = 355. The108

daily-averaged HF radar currents are used for the analysis.109

The EOF analysis for 2-hourly currents was conducted in Hisaki (2006).110

The effect of the tide on currents was out of the scope of the present study. It111

is possible to draw a dendrogram by reducing the number of time series. The112

period of the analysis was from April 16 to May 14 in 1998. The number113

of time series (days) was N = 29. We referred to the time series by day114

number. For example, the current map in April 16 , 1998, is day number 1115

and the current map in May 14, 1998 is day number 29.116

3. Results117

3.1. Ward method and dendrogram118

Figure 2 shows the dendrogram of the cluster analysis by the Ward119

method in 1998. The numbers below the horizontal axis show the day num-120

bers, and the vertical axis shows the distance or dissimilarity between clus-121

ters. If the current patterns are divided into 6 groups, the groups are (29,122

28, 27), (2, 1, 26, 25, 24, 23), (18, 17), (20, 19 , 9, 8, 14, 7, 10), (12, 5, 6, 13,123

22), and (16, 15, 21, 11, 4, 3), which are referred as W-1-6, W-2-6,..., W-6-6,124

respectively. The group W-i-M means the i−th group in the dendrogram125
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clustered into M groups by the Ward method. the notation (29, 28, 27)126

means that the current maps for May 14 (day number= 29), May 13 (day127

number= 28) and May 12 (day number= 27) were categorized in the same128

group, i.e., as having similar current patterns. If the current patterns are129

clustered into 12 groups, the groups are (29, 28, 27), (2, 1), (26, 25, 24, 23),130

(18), (17), (20, 19), (9, 8, 14, 7, 10), (12, 5, 6, 13), (22), (16, 15, 21), (11, 4)131

and (3).132

The levels at which the clusters are joined are written as cd(i), i = 1.., N−133

1, where N is the number of data points to be clustered, and cd(i) ≥ cd(i+1).134

Figure 3 shows a schematic illustration of cd(i). The number N is equal to135

the time series number, and N = 29 in 1998. For example, the values are136

cd(1) = 2594.9, cd(2) = 1964.0, cd(3) = 1760.2 and cd(28) = 79.7 from137

Figure 2.138

If d is the threshold distance to divide the data into M groups, d must139

satisfy cd(M) < d < cd(M − 1). Therefore, the value of cd(M − 1) − cd(M)140

is a reference to assess the validity of dividing the data into M groups. The141

value of cd(M − 1) − cd(M) decreases as M increases for most of M . The142

value of cd(M − 1) − cd(M) for M = 6 is 133.4 in Figure 2, and it is the143

local maximum values of cd(M − 1)− cd(M). Therefore, the clustering into144

6 groups is reasonable.145

Figure 4 shows the time series of group number clustered by the Ward146

method. The vertical axis of Figure 4 shows the total number of groups M .147

The group numbers are from 1 to M for the total number M . The groups148

are numbered in order of the number of daily surface current maps in the149

group; group 1 has the most surface current maps, and group M has the150
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fewest surface current maps.151

For example, group 1 is (7, 8, 9, 10, 14), group 2 is (5, 6, 12, 13), and152

group 3 is (23, 24, 25, 26) for the total group number M = 9. Group 9 is153

(22) for M = 9. If the numbers of groups are the same for different groups,154

the first days are compared. The group with the earlier first day is assigned155

the smaller group number, so the group of (5, 6, 12, 13) is assigned group156

number 2.157

In the case of hierarchical cluster analysis, groups are split into smaller158

groups as the total number of groups increases. Although the information on159

similarities among groups is not included in Figure 4, it is possible to show160

groups for different numbers of longer data, while the dendrogram cannot161

show groups for longer time series.162

3.2. K-means method163

Figure 5 also shows the time series of group number as Figure 4 but164

divided by the K-means method. Group formation by the K-means method165

is inadequate. For example, if the surface current maps are separated into166

2 groups, the surface current map at day= 2 is included in only one of the167

groups. On the other hand, the surface current map at day= 2 is in the same168

group as that at day= 1 in all of the three methods for 12 clusters. This169

is known as the ”curse of dimensionality”, and it is impossible to use the170

K-means method for classifying the surface current maps without reducing171

the dimensions of the data.172
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3.3. SOM analysis173

Figure 6 shows 2× 3 (K = 2, L = 3 in Appendix A) SOM arrays, which174

shows weight vectors mi, defined in Appendix A. Figure 7 shows time series175

of BMUs (Best Matching Units), which are defined in Appendix A. The 6176

groups are (7, 8, 9, 14, 17, 19), (3, 4, 5, 6, 10, 11, 12, 15, 16, 21, 22), (2, 18,177

20), (13), (24, 25, 26, 27, 28, 29) and (1, 23) for BMU= 1, 2, 3, 4, 5, and 6,178

respectively.179

One of the typical current patterns shows that strong southward currents180

flow east of the 128◦ E line and weak northeastward currents flow near the181

coast, as shown for BMU= 1 and 2 (Figure 6a, b). The difference of current182

patterns for BMU= 1 and BMU= 2 is that the southward flows in the eastern183

observation area are stronger for BMU= 2, while the northeastward currents184

for BMU= 2 are weaker.185

The other typical current pattern shows that strong northeastward cur-186

rents flow west of 128.1◦ E, and eastward or southeastward currents flow187

east of that longitude, as shown in BMU= 5 (Figure 6e). This current pat-188

tern is a clockwise eddy-like pattern. The current patterns for BMU= 3189

and BMU= 4 are mixed patterns of surface current patterns for BMU= 1,190

BMU= 2, BMU= 5 and BMU= 6. In all of the SOM arrays, the currents191

near the coast are northeastward,192

Figure 8 shows the time series of group numbers formed by the SOM193

analysis. The vertical axis of Figure 8 shows the total number of groups194

M = KL. For a given M , the natural number K is the largest natural195

number satisfying K ≤ L. The numbers K = L = 3 for M = 9, K = 3 and196

L = 4 for M = 12, and K = 1 and L = M , if M is a prime number. The197
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group numbers are from 1 to M for the total number M . As in the case of198

the Ward method, the groups are numbered in order of the number of daily199

surface current maps in the group, with group 1 having the most surface200

current maps, and the group M having the fewest. This group number is201

different from the BMU number and information about the similarities among202

groups is not included in the group number.203

If the total number of groups is M = 6, the group numbers are from 1 to204

6. The daily surface current maps at day numbers (3, 4, 5, 6, 10, 11, 12, 15,205

16, 21, 22) constitute group 1, which corresponds to BMU= 2 (Figure 7), (7,206

8, 9, 14, 17, 19) constitute group 2, which corresponds to BMU= 1, and (24,207

25, 26, 27, 28, 29) are group 3, which corresponds to BMU= 5, for M = 6.208

The separation into smaller groups by increasing the total grouping num-209

ber M is not systematic. For example, the day numbers 19 and 20 are in210

different groups for the total grouping number M = 2, K = 1 and L = M .211

However, they are in the same group for M = 3, K = 1 and L = M .212

3.4. Comparison between Ward method and SOM213

Figure 9 shows mean current maps for each group divided into 6 groups214

by the Ward method. Figure 9a is the mean current in the group W-1-6,215

Figure 9b is the mean current in the group W-2-6, and Figure 9f is the mean216

current in the group W-6-6. The mean current patterns are similar to some217

SOM array patterns in Figure 6. For example, the current pattern of W-2-6218

(Figure 9b) is similar to BMU= 5 (Figure 6e). The day numbers of W-2-6219

are (2, 1, 26, 25, 24, 23), while the day numbers of BMU= 5 are (24, 25, 26,220

27, 28, 29). On the other hand, all of the currents near the coast are not221

northeastward; see, for example, Figures 9e and f. The formation of groups222
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by SOM is similar to that by the Ward method.223

The SOM array patterns are similar to the mean currents of each group.224

However, the magnitudes of the vectors in the SOM array are smaller than225

the mean current vectors in each groups. The neighborhood function is a226

Gaussian function (Eq. (A.3)). Liu et al. (2006) showed that the Gaussian227

neighborhood function results in more smoothed patterns and smaller vec-228

tors. On the other hand, the ”ep” function (equation (3) in Liu and Weisberg229

(2005)) gives more accurate mapping, in which case the magnitudes of the230

vectors are larger. The SOM array patterns group the days according to fea-231

tures: The current patterns near the coast are not related with the grouping,232

and are almost always the same in the SOM arrays.233

3.5. EOF analysis234

Figure 10 and Figure 11 show results of the EOF analysis. Figure 10235

shows the cumulative variances and eigenvalues plotted against EOF mode236

number K. Mode 1 accounts for 47.9%, mode 2 accounts for 34.5%, and237

mode 3 accounts for 8.65% of the total variance. The first three EOF modes238

together account for 91.0%. The first three modes are above the line of higher239

modes (Figure 10b), which shows that the first three modes are significant.240

The eigenvectors of the first three modes are similar to those in Hisaki241

(2006), in which EOF analysis was conducted on 2-hourly data. The first242

EOF mode is related with the change of mesoscale eddies (Hisaki (2006)).243

Figure 12 shows the relationship of time coefficients for the EOF mode244

1 (b1(t) in Eq. (1)) and 2 (b2(t)) for t = 1, ..., 29 days. If we separated245

the groups from the position of (b1(t), b2(t)) manually, the number of groups246

would be 6, and the groups would be (1, 2, 23, 24, 25, 26), (3, 4, 10, 11, 15,247
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16, 21), (5, 6, 12, 13, 22), (7, 8, 9, 14, 19, 20), and (17, 18).248

3.6. Compression by EOF249

Figure 13 shows the grouping after compressing the dimensions of the250

data by EOF as explained in section 2.1. Figure 13 shows the time series251

of the group number for the cut-off EOF mode number NE in Eq. (1). The252

number of divisions is 6, and the group number is assigned as Figure 4: The253

number of daily current maps is the largest in group 1, and the second-largest254

in group 2 in Figure 13.255

The grouping by the K-means method is sensitive to the the cut-off EOF256

mode number NE, while the groupings by the SOM and Ward methods are257

not so sensitive to the cut-off EOF mode number. In particular, the SOM258

grouping dependency on the cut-off EOF mode number is the smallest, while259

the Ward method groupings for NE = 7 and NE = 8 differ. The grouping by260

the Ward method for NE = 12 is different from that without EOF (Figure 4).261

The grouping by the Ward method for NE ≥ 4 is same as that without EOF262

(Figure 8). Therefore, the reduction of the dimensionality is unnecessary in263

the case of SOM analysis, if we do not need to reduce the noise in a dataset.264

The groups for NE = 2 by SOM analysis are (3, 4, 5, 6, 10, 11, 12, 15),265

(1, 24, 25, 26, 27, 28, 29), (7, 8, 14, 16, 17, 19), (2, 18, 20), (9, 13, 22). and266

(26). The grouping are similar to the manual grouping from Figure 12 as in267

section 3.5. It is shown that the scatter plot of the fist- and second-mode268

EOF coefficients as shown in Figure 12 can be used as a reference to decide269

the number of divisions for the grouping in the case of SOM analysis.270
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4. Discussion and Conclusions271

This paper compares SOM analysis with cluster analyses for classifying272

surface current maps. In physical oceanography, there are few studies that273

use cluster analysis for classification of ocean data maps.274

The Ward method and K-means methods are compared as cluster anal-275

yses. EOF is also compared with SOM analysis and is used to reduce the276

dimension of the data. The time series is not large, so it is possible to draw277

a dendrogram for the comparison.278

The classification by SOMs reveals the current patterns. One of the279

patterns is that strong southward currents flow east of the 128◦ E line and280

weak northeastward currents flow near the coast. The other current pattern is281

a clockwise eddy-like pattern in the HF radar observation area: The current is282

northeastward in the western part of the observation area, and southeastward283

in the eastern part of the area. Other patterns are mixtures of the two typical284

patterns.285

Nakano et al. (1998) classified the distributions of sea surface dynamic286

height (SSDH) east of Okinawa Island into three patterns: The first type287

is an area of high SSDH near Okinawa Island, which is related to BMU= 5288

(Figure 6e). The second type is an area of low SSDH near Okinawa Island,289

which is related to BMU= 2 (Figure 6b). The third type is an area of high290

SSDH around Okinawa Island and an area of low SSDH offshore, which is291

related to BMU= 3 (Figure 6c). The classification of SSDH is related to the292

classification in the present study.293

The classification by the Ward method is also similar to that by SOM.294

The SOM patterns show only the features for the grouping. On the other295
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hand, the averaged data in the grouped data show features that are not296

related with the grouping.297

The dendrogram can be a reference to decide the number of divisions of298

the grouping not only by the Ward method but also by the SOM. Although299

it is impossible to draw a dendrogram for a larger data set, we can decide the300

number of groupings by estimating cd(M − 1)− cd(M) defined as Figure 3.301

The scatter plot of the first- and second-mode EOF coefficients is related302

with the classification by the SOM as shown by Mau et al. (2007). In addi-303

tion, the scatter plot can be a reference to decide the number of groupings.304

In this case, they are divided into 6 groups.305

The K-means method cannot be applied to grouping without compressing306

the dimensions. EOF is a simple method to reduce the dimensions of the307

data. However, the classification by the K-means method is sensitive to the308

cut-off EOF mode number NE in Eq. (1), and we cannot see the relation-309

ship between the eigenvalues (Figure 10) and the optimal cut-off EOF mode310

number.311

The classifications by the SOM and Ward method are not sensitive to the312

cut-off EOF mode number. The SOM is especially insensitive to the cut-off313

EOF mode number NE. The grouping by SOM from EOF time coefficients314

bk(t) (k = 1, . . . , NE) was identical to the grouping without EOF for NE ≥ 4,315

while the groupings by the Ward method with and without EOF differed for316

NE = 12.317

EOF analysis is frequently applied to reduce noise in a dataset. If the318

dataset is noisy, and the dimensions of the data are reduced by EOF, the319

SOM is the best method for classification due to its insensitivity to the cut-320
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off EOF mode number NE. It is difficult to decide the optimal cut-off EOF321

mode number for both the Ward method and the K-means method.322

If the dataset is not noisy, we do not need the reduction by EOF for SOM323

classification. However, it is not always true that the grouping by the Ward324

method with EOF is better than that without EOF.325

The surface current data are interpolated to fill the data gaps, and the326

number of grids of data are the same for the entire period. It is possible to327

apply the SOM even when there are data gaps, without having to fill the328

gaps.329

The SOM and Ward method are better than the K-means method for the330

classification. If the number of divisions into groups is a prime number such331

as 3, 5, 7, and 11, it may be better to use the Ward method. In other cases,332

the SOM is better for the grouping.333

Although we could demonstrate the advantage of the SOM for this short334

time-series data (29 maps in total), the short time series was not sufficient to335

reveal the true power of the SOM method. The SOM method can deal with336

very long time series, and it is useful to apply the SOM to the classification337

of longer time-series data maps.338
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Appendix A. Algorithm and parameters of SOM404

The procedure of an SOM size of K × L is as follows:405

1. The weight vectors mi (i = 1, ..., KL), which are Nd−dimensional vec-406

tors, are initialized by generating random numbers, where Nd is the407

number of data per time (for example, if two-dimensional currents (u, v)408

are observed, Nd = 2Ng, where Ng is the number of observation points),409

and i is the unit number.410
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2. Set l = 0 (iteration number)411

3. Set k = 1 (time series number)412

4. Find the best matching unit (BMU), i = c = ck (1 ≤ c ≤ KL) to413

minimize the value of |xk − mi|, where xk is the observation data at414

the time series number k, and xk is the Nd−dimensional vector.415

5. Update mi416

mi = mi + αhic(xk −mi) (A.1)

6. Update time series number: k + 1 −→ k417

7. If k ≤ N , repeat from 4, where N is the total time series number.418

8. If k = N + 1, update the iteration number: l + 1 −→ l.419

9. If l ≤ T , repeat from 3. The maximum iteration number T is called420

the training length.421

10. If l = T + 1, stop the iteration.422

The time-decreasing learning rate α in Eq. (A.1) is423

α = 0.5(1− l

T
). (A.2)

The neighborhood function hic is424

hic = exp(− d2ci
2σ2

l

), (A.3)

where dci is the distance between map unit number c and i on the map grid425

(e.g., Liu and Weisberg (2005)).426

The neighborhood radius σl decreases as a function of l, and it is estimated427

as428

σl = σa +
l(σb − σa)

T
. (A.4)

The values of σa and σb are σa = K and σb = 1.429
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Figure caption430

Figure 1: HF radar observation area.

Figure 2: Dendrogram by the Ward method.

Figure 3: Schematic illustration of Cd(i) defined in section 3.1.
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Figure 4: Group number as a function of day number and total group number M found

by the Ward method.

Figure 5: Same as Figure 4 but for the K-means method.

Figure 6: 2× 3 SOM arrays, i. e., weight vectors mi, defined in Appendix A.

Figure 7: Same as Figure 6 but for time series of BMU.

Figure 8: Time series of group number divided by SOM.

Figure 9: Mean current maps for each of 6 groups formed by the Ward method. (a) W-1-6,

(b) W-2-6, (c) W-3-6, (d) W-4-6, (e) W-5-6, and (f) W-6-6.

Figure 10: (a) Cumulative variances and (b) eigenvalues plotted against EOF mode num-

ber.

Figure 11: (a) Eigenvector for the first EOF mode, (b) time coefficients for the first EOF

mode, (c) same as (a) but for the second EOF mode, (d) same as (b) but for the second

EOF mode, (e) same as (a) but for the third EOF mode, and (f) same as (b) but for the

third EOF mode.

Figure 12: Relationship of time coefficients for the EOF mode 1 (b1(t) in Eq. (1)) and 2

(b2(t)) for t = 1, ..., 29 days. The numbers are day numbers.

Figure 13: (a) Number of groups formed by SOM analysis as a function of time and cut-off

EOF mode number. (b) Same as (a) but by the Ward method. (c) Same as (a) but by

the K-means method.
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