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Abstract

It is necessary to understand how the Doppler peak frequency in the Doppler spectrum of radio

wave scattering from moving waves is determined for practical applications such as oceano-

graphic remote sensing. The author investigated Doppler peak frequency by using the integral

equation method (IEM) for V-V polarization and a one-dimensional surface and by calculating

the Doppler spectra of backscattered signals at moderate incidence for a finite illuminated area.

In some cases, the Doppler peak frequency in Doppler spectra are determined from the surface

wave frequency and not from the phase velocity of the surface wave, if the illuminated area is

finite. The author investigated scattering from a sinusoidal wave for various radar and wave

parameters. Doppler peaks were revealed at wave frequencies and higher-order harmonics of

the Doppler peaks appeared in most cases. However, Doppler peaks whose position was close

to the wave phase velocity-Doppler frequency became dominant as the phase difference of the

reflected radio wave within the illuminated area became smaller. The appearance of wave phase

velocity-Doppler peaks was limited when quasi-coherent scattering dominated. This interpre-

tation can be applied to Bragg scattering, for which the Bragg wave phase velocity-Doppler

frequency is identically equal to the wave frequency of the Bragg wave.
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1 Introduction

We need to understand scattering of radio waves from moving rough waves for practical

applications such as oceanographic remote sensing. To compute radio scattering from conduct-

ing rough surfaces, the integral equation method (IEM) has widely been used by numerous

investigators for more than two decades [e.g., Lentz, 1974].

However, most investigators have concentrated on a comparison of numerical solutions with

approximate methods such as the small perturbation method (SPM) and Kirchoff approximation

(KA) [e.g., Fung and Chen, 1985; Chen and Fung, 1988], or on improving numerical techniques

to reduce computational time [e.g., Chen, 1996]. Most of them have treated non-moving sur-

face. Investigators who have treated moving surfaces are quite scarce, and consequently our

understanding of Doppler spectra is not satisfactory.

For example, to the author’s knowledge, the answer to the fundamental question of how the

Doppler peak frequency in the Doppler spectrum of radio wave scattering from moving waves

for a finite illuminated area is determined has not been investigated. There are two possible

solutions: The first is that the Doppler peak frequency is equal to the wave frequency, because

the amplitude of scattered radio wave signals varies along with the phase of a wave acting as

a scatterer. As a result, the amplitude varies with a period of the wave period and the power

spectrum of scattered signals has a peaks at the wave frequency. In fact, the Doppler peak

frequency in the Doppler spectrum of a scattered signal calculated by the small perturbation

method is equal to the wave frequency as shown in Appendix A (Eq. (A16)) and Hisaki and

Tokuda [2001]. If we consider perturbation expansion to the higher-order, the Doppler peak

frequency is expressed by the sum the wave frequencies (Hisaki and Tokuda [2001]).

The other possible answer is that Doppler peak frequency in the Doppler spectrum is deter-

mined by the Doppler shift corresponding to the wave phase velocity. It is widely believed that
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the Doppler shift is determined from the line-of-sight velocity of the scatterer and the latter

one is correct. However, as shown later from mathematics (Appendix A (Eq. (A16)) and Hisaki

and Tokuda [2001]) and numerical computations (e.g., Figure 7a), the Doppler peak frequency

is determined from the surface wave frequency and not from the phase velocity of the surface

wave in some cases, if the illuminated area is finite.

Bragg scattering dominates in the case of radio wave scattering from randomly rough surface

waves. The Doppler frequency by Bragg scattering (Bragg frequency) is the same as both the

frequency of the wave contributing to Bragg scattering (Bragg wave) and Doppler shift derived

from the phase velocity of the Bragg wave (Bragg wave phase velocity). Let ωB be a frequency

of the Bragg wave, ki be a radio wave number, and θi be an incident angle. The Bragg wave

number is 2ki sin θi, and the Bragg wave phase velocity is vB = ωB/(2ki sin θi). Therefore, the

Doppler frequency derived from the phase velocity ωD = 2vB sin θiω0/c = ωB, where ω0 is a

radio frequency and c = ω0/ki is the light velocity. That is, the wave frequency of the Bragg

wave (ωB) is identically equal to the Doppler frequency derived from the Bragg wave phase

velocity (ωD). Although this mathematical explanation to the fact that ωD = ωB in the case of

Bragg scattering is well known, there are few physical explanations to this fact. The few studies

[Kwoh and Lake 1984; Thompson 1989; Rino et al. 1991] in which the time-varying properties

of scattered signals based on IEM were calculated did not give the interpretation to the fact

that ωD = ωB in the case of Bragg scattering.

The subject of this study is to investigate the Doppler spectra of scattered radio waves

from moving waves using IEM. The main objective is to identify the part of the wave motion

which determines Doppler shift and/or Doppler spectrum of radio wave scattering from moving

waves under different conditions of wave and radar parameters. The purpose of this study is

not accurate prediction of Doppler spectra scattered from the sea. We must eliminate Bragg
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scattering from our problem because it is so much stronger than the scattering we want to

consider. Therefore, idealized situations for surface waves as scatterers are considered.

After reviewing the formulation and description of the method of the computation in Sec-

tions 2, the author shows the Doppler spectra of radio wave scattering from moving sinusoidal

waves and he investigates the radar and wave parameter dependencies of the Doppler peak

frequency in Section 3. The scatterers considered here are moving waves like ocean waves but

are not limited to real ocean waves. It should be noted that the IEM used here is rigorously

correct only for non time-varying surfaces. However, since Doppler frequencies and surface wave

frequencies are much smaller than the radio wave frequencies, it is possible to regard surfaces

as to be ”frozen” at each time and to use the IEM for non time-varying surfaces. A discussion

and conclusions are presented in Section 4.

2 Formulation

Figure 1 shows the scattering geometry. The horizontal coordinates are (x, y), and the z is

the vertical coordinate. The surface displacement η = η(y) = η(y, t) is independent of x, where

t is the time. The incident radio wave number is ki, and the incident angle is θi.

To compute backscattered signals from a perfectly conducting surface and V-V polarization,

we must solve the tangential component of the surface current Jt(y, η(y)), which is governed by

the magnetic field integral equation (MFIE) as

Hinc(y, η(y)) = −1

2
Jt(y, η(y)) +

i

4
ki

∫ D

−D

[
Jt(y

′, η(y′, t))H
(2)
1 (kir)

cos(Φns)
][

1 + (
∂η

∂y′
)2
] 1
2dy′. (1)

This is where H
(τ)
ν (z) is the ν-th order Hankel function of the τ -th kind, Hinc(y, z) is the incident

magnetic field, [−D,D] is the integrated area, and r = [(y−y′)2+(η(y)−η(y′))2]
1
2 is the distance
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between observation point (y, η(y)) and source point (y′, η(y′)). The angle Φns = Arc cos(ns ·rs)

is the angle between surface normal vector ns = (−∇η + ez)(|∇η|2 + 1)−1/2 and unit vector

rs = (1/r)(y′− y, z′− z) directed from observation point (y, z) to source point (y′, z′), where ez

is the unit vector along the z-axis. Strictly speaking, the IEM used here is correct only for non

time-varying surfaces, because this IEM is derived for monochromatic radio waves. However,

since Doppler frequencies and surface wave frequencies are much smaller than the radio wave

frequencies, it is possible to regard surfaces as to be ”frozen” at each time and to use the IEM

for non time-varying surfaces

Equation (1) is converted to a matrix equation in the form

(−1

2
I + K)J = h, (2)

where I is a unit matrix of M ×M and M is the number of divisions of the segment [−D,D].

The element of the complex matrices K, J, and h are given in the following forms for

y = ym = −D +
2D

M
(m +

1

2
) (m = 0, ..,M − 1) (3)

as

Kmn =
1

4
ki

∫ dn+1

dn
N1(kir) cos(Φns)

[
1 + (

∂η

∂y′
)2
] 1
2dy′

+
i

4
ki

∫ dn+1

dn
J1(kir) cos(Φns)

[
(
∂η

∂y′
)2 + 1

] 1
2dy′,

(m,n = 0, ..,M − 1) (4)

Jn = Jt(yn, η(yn)) (n = 0, . . . ,M − 1), (5)

and

hm = Hinc(ym, η(ym)) (m = 0, . . . ,M − 1), (6)

where

dn = −D +
2D

M
n (n = 0, . . . ,M − 1), (7)
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and Nν and Jν are the ν-th order Neumann and Bessel functions, respectively. The real part

of the diagnosis element for K has singularity, but it is calculated for y = ym as

Real(Kmm) =
1

πki

∂2η(y)

∂y2

{ ∞∑
l=0

(albl) −
1

2
(kiϵ)[1 + (

∂η(y)

∂y
)2]−1

}
+

1

4
ki

∫ dn+1

dn
D1(kir) cos(Φns)[1 + (

∂η(y′)

∂y′
)2]

1
2dy′ (8)

a0 =
1

4
(kiϵ)

3[1 + (
∂η(y)

∂y
)2]

1
2 (9)

al+1

al
=

−1

4(l + 1)(l + 2)
(kiϵ)

2[1 + (
∂η(y)

∂y
)2] (10)

bl =
1

2l + 3

[
log(kiϵ) −

1

2l + 3
+

1

2
ln(1 + (

∂η(y)

∂y
)2)

]
, (11)

Dν(z) =
2

π
Jν(z)(γ − ln 2)

− 1

π

(z
2

)ν ∞∑
l=0

(−1)l

l!(ν + l)!

(z
2

)2l[ l∑
k=1

1

k
+

ν+l∑
k=1

1

k

]
(12)

γ = 0.5772.. is a Euler number and ϵ = D/M .

The incident magnetic field is the plane wave written as

Hinc = GT (y, z) exp(−iki(y sin θi − z cos θi)), (13)

and GT (y, z) is a taper function of the form

GT (y, z) = exp(−(y cos θi + z sin θi)
2b

g2bT
), (14)

where b is a parameter to express the beam pattern. The parameter gT is expressed in terms

of the effective illuminated area Leff , which is defined as

Leff =

∫ ∞

−∞
[GT (y, 0)]2dy, (15)

or

gT = 2
1
2n

−1Γ(
1

2n
+ 1)Leff cos θi, (16)

where Γ is the Gamma function.
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The author calculated the far field magnetic field as

Hs =
1

2

( ki
Leff

) 1
2 exp(−i(kiR +

3π

4
))∫ D

−D

[
Jt(y

′, η(y′)) exp(−iki(sin θiy
′ − cos θiη(y′)))

]
(cos θi + sin θi

∂η

∂y′
)dy′ (17)

from estimated surface current Jn = Jt(yn, η(yn)) (n = 0, ..,M − 1) by solving Eq. (2), where

R is the distance between the observation point and the illuminated area.

The summary to calculate Hs are as follows: First, the surface current J = (Jn) is calculated

from Eq. (2). The real parts of diagnosis elements for complex matrix K are calculated from

Eqs. (3), (7), and (8)–(12). Other elements of complex matrix K are calculated from Eqs. (3),

(7), and (4). The vector h = (hm) is given by Eqs. (3), (6), (7), (13), (14), and (16). The

matrix equation (2) is solved iteratively and the surface current J = (Jn) is estimated. Then,

the far field magnetic field Hs is calculated from the surface current J = (Jn) by Eq. (17). A

Doppler spectrum, which is a power spectrum of the scattered signal as a function of Doppler

frequency fD = ωD/(2π), is obtained by calculating the power spectrum of complex time series

Hs = Hs(t) = Hs(j∆t) (j = 0, . . . , Nt−1), where ∆t is the time step and Nt is the total number

of time series.

The surface displacement of a wave propagating to the negative y-direction is written as

η(y, t) =
N−1∑
j=0

Awj cos(ωwjt + kwjy + ϕwj), (18)

where N is the number of wave components, Awj is a wave amplitude, ωwj is a wave angular

frequency, kwj is a wave number, ϕwj is a phase, and satisfying the linear dispersion relationship

ωwj = (gkwj)
1/2, where g is the gravitational acceleration. Here, the effect of surface tension

has been neglected for simplification.
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3 Scattering from sinusoidal waves

3.1 Examples of numerical computations

The scattered signals from sinusoidal waves (N = 1 in Eq. (18) and ϕw0 = 0) were calculated.

The parameters for the computation are in Table 1. To identify the part of wave motions

contributing to Doppler frequencies, the rectangular beam form is preferred. Furthermore, the

author calculated scattered signals for b = 1 in Eq. (14) (Gaussian beam form), and it is found

that the integration range D must be very large since backscattered signals from sinusoidal

waves are very weak. Therefore, it takes very long time to calculate scattered signals from

sinusoidal waves by MFIE. Here, the parameter b in Eq. (14) is 10 (near-rectangular beam

form), although it may be unrealistic and Doppler spectra may be affected by edge effects. In

this example, the integration range D is much larger than the effective length Leff , because the

author computed scattered signal later for a large wave slope as the effect of shadowing may be

significant. However, the constraint 2D/(M − 1) < 2π/(5ki) [Axline and Fung 1978] is satisfied

in all of the computations presented here.

Figure 2 indicates the Doppler spectrum of scattered signal Hs for small wave amplitudes

Aw0. For small wave amplitudes, the peaks of the Doppler spectrum appear almost at the wave

frequency ±fw0. The scattered signal Hs varies significantly as the wave phase varies. As a

result, the Doppler peaks can be seen at about ±fw0. The harmonics of the Doppler peaks

become significant as the wave amplitude increases.

Figure 3 indicates the Doppler spectrum of scattered signal Hs for large wave amplitudes

Aw0. In these examples, the time step ∆t is 0.01 s. The other parameters are the same as those

in Table 1.

A Doppler peak can be seen for Aw0 = 1 m, whose position is different from the Doppler peak
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corresponding to the wave phase velocity of the wave (wave phase velocity-Doppler frequency).

This peak is close to the the wave phase velocity-Doppler frequency. as wave amplitudes larger,

although the peak frequency is somewhat smaller than the the wave phase velocity-Doppler

frequency. In Figure 2, the peak Doppler frequency of radio wave scattering from moving

waves is determined by the wave frequency and not by the wave phase velocity for small wave

amplitudes. In Figure 3, the peak Doppler frequency becomes closer to the wave phase velocity-

Doppler frequency as larger wave amplitudes. Figure 3 are somewhat noisy, however, the author

believes that the main features discussed here are valid.

3.2 Parameter dependency of the Doppler peak position

Although a Doppler peak corresponding to the wave phase velocity appears from Aw0 = 2.5 m

in the example presented here, the wave amplitude is too large. In fact, the amplitude Aw0

must satisfy the constraint:

2Aw0

λw0
≤ 1

7
, (19)

although wave breaking is occurred at the wave slope lower than Eq. (19) in practice. Here, the

author investigated the radio frequency dependence of Doppler spectra at the wave amplitude

Aw0 = (1/20)λw0 = 1 m. To calculate the time series of scattered signal Hs, it takes long time

to solve the MFIE, or Eq. (2), because the number of divisions in range M had to be large

enough to resolve the radio wavelength. Therefore, since the effect of shadowing may not be

significant at the wave slope and incident angle (θi =45◦), the Kirchoff approximation (KA), in

which the surface current J is approximated as

Jn = Jt(yn, η(yn)) ≃ −2Hinc(yn, η(yn)), (n = 0, . . . ,M − 1) (20)

(instead of estimating J by solving Eq. (2)), was used to compute scattered signal Hs.
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To check the validity of computation, the Doppler spectra of scattered fields calculated by

Kirchoff approximation and by MFIE were compared at the limiting wave amplitude Aw0 =

(1/20)λw0 = 1 m. In this computation, D = 2 m, ∆t = 0.01 s, and M = 250 while the other

parameters were the same as those in Table 1.

Figure 4 compares the Doppler spectra, which agree well. Furthermore, the difference between

Figure 4 and Figure 3a is small. Using Kirchoff approximation to calculate the Doppler spectra

for the parameter as the wave amplitude Aw0 = 1 m, incident angle θi ≤45◦ and radio frequency

f0 ≥ 1 GHz does not significantly alter the configuration for the Doppler spectra.

Figure 5 shows the radio frequency dependence of Doppler spectra for Aw0 = (1/20)λw0 =

1 m. In this computation, D = 2 m, M = 2000, Nt = 8192, ∆t = 0.001 s and the Doppler

frequencies corresponding to the wave phase velocity (fpD) are respectively 26 Hz, 53 Hz, 132 Hz,

264 Hz, for radio frequency f0 =1 GHz, 2 GHz, 5 GHz and 10 GHz. The other parameters are

the same as those in Table 1. The positions of the Doppler peaks are different from those of

wave phase velocity-Doppler peaks this example even for the highest radio frequency.

To verify the calculation in Figure 5 that Doppler peaks whose position are close to wave

phase velocity-Doppler peaks do not appear, the Doppler spectra were computed for θi = 15◦.

The parameters in this computation were the same as those in Figure 5 except for incidence

angle θi. Doppler frequencies corresponding to the wave phase velocity (fpD) were respectively

9.6 Hz, 19.3 Hz, 48.2 Hz and 96.5 Hz, for radio frequencies f0 =1 GHz, 2 GHz, 5 GHz and

10 GHz.

Figure 6 shows the results. Doppler peaks corresponding to the wave phase velocity appear

in these examples. Furthermore, the bandwidths of Doppler spectra in Figure 6 are larger than

those in Figure 5, because the line-of-sight components of vertical motions of surface waves for

θi = 15◦are larger those for θi = 45◦. Figure 6 are somewhat affected by edge effects, however,
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the author believes that the main features discussed here are valid.

In general, as the wave slope becomes larger or the incident angle becomes smaller, the quasi-

coherent scattering dominates. Therefore, we can understand the appearance of Doppler peaks

corresponding to wave phase velocity for larger wave amplitudes in Figure 3 and smaller incident

angles in Figure 6.

To investigate the wave amplitude dependence of Doppler spectra for a fixed wave slope,

Doppler spectra for various wave amplitudes Aw0 = (1/20)λw0 m and θi = 15◦ were estimated

from Kirchoff approximation.

In this estimation, f0 = 1 GHz, M = 2000, Nt = 8192, ∆t = 0.005 s and the Doppler

frequencies corresponding to the wave phase velocity (fpD) are respectively 0.965 Hz, 3.05 Hz,

9.65 Hz, and 30.5 Hz for wave amplitudes Aw0 =0.01, 0.1, 1 and 10 m. These wavelenghts vary

from 0.2 m to 200 m. The wave frequencies (fw0) are respectively 2.79 Hz, 0.88 Hz, 0.28 Hz,

and 0.088 Hz for wave amplitudes Aw0 =0.01, 0.1, 1 and 10 m.

In these examples, the Doppler peak whose position is close to the wave phase velocity-

Doppler frequency is seen for larger wave amplitudes (Figure 7c,d: Aw0 = 1, 10 m). On the

other hand, the Doppler peak corresponding to the wave frequency is prominent in Figure 7a

(Aw0 = 0.01 m, fw0 = 2.79 Hz). For the second smallest amplitude (Fig. 7 b: Aw0 = 0.1 m,

fw0 = 0.88 Hz), higher-order harmonics of the wave frequency are prominent and the harmonic

close to the wave phase velocity-Doppler frequency (fpD) is the largest in this example.

Furthermore, the author investigated the Doppler peak dependence of effective lengths for

the illuminated area Leff . Doppler spectra were computed using Kirchoff approximation for

Leff = 0.1, 0.3, 1 and 5 m. In this computation, D = 20, M = 15000, Nt = 8192, ∆t = 0.005 s,

θi = 15◦, λw0 = 1 m, Aw0 = (1/20)λw0 = 0.05 m and f0 = 10 GHz. Figure 8 shows the result.

The wave phase velocity-Doppler peaks are seen in all examples. For larger illuminated area,
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scattered signals varying along with the phase of a wave acting as a scatterer vanish. As a

result, the wave phase velocity-Doppler peak is the most prominent in the largest illuminated

area (Figure 8 d).

4 Discussion and Conclusions

The author investigated the scattering properties from sinusoidal waves for a finite illuminated

area to answer the question: how is the Doppler peak frequency in the Doppler spectrum

determined for scattering from moving waves ? This problem does not seem to be considered.

The wave frequency of the Bragg wave is equal to the Doppler frequency derived from the

Bragg wave phase velocity, i.e., ωD = ωB in the case of Bragg scattering. Furthermore, it is

believed that the Doppler shift is determined from the line-of-sight velocity of the scatteres,

and the Doppler shift for scattering from surface waves is determined from the line-of-sight

phase velocity of surface waves. However, as explained physically (Section 1), mathematically

(Eq. (A16)) and numerically (e.g., Figure 7a), the Doppler peak frequency in the Doppler

spectrum is determined from surface wave frequencies in some cases, if the illuminated area is

finite.

To explain interpretation of the fact that the Doppler peak frequency is determined from

the wave frequency, we write transmitted radio wave signals as s(t) = exp(−iω0t). Because

amplitudes of scattered radio wave signals vary along with the phase of a wave acting as a

scatterer, amplitudes of the scattered radio wave are written as a(t) = exp(−iωwt), where ωw

is a radian frequency of a wave acting as a scatterer. Therefore, scattered signals are written as

p(t) = a(t)s(t) = exp(−i(ω0 + ωw)t), which shows that Doppler frequency is equal to the wave

frequency.

The author attempted to calculate scattered signals from sinusoidal waves based on MFIE or
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KA. Although the MFIE is is rigorously correct only for monochromatic radio waves, we can

regard surfaces as to be ”frozen” at each time in this case and the MFIE is used. The author

considered two kinds of incident beam patterns: Gaussian beam pattern (b = 1 in Eq. (14))

and near-rectangular beam pattern (b = 10 in Eq. (14)).

However, because backscattered signals from sinusoidal waves are very weak, it is not feasible

to calculate scattered signals for b = 1. Therefore, the results only for b = 10 are presented for

scattering from sinusoidal waves.

From numerical computations of Doppler spectra for various parameters, the Doppler peaks

are at the wave frequency and harmonics of the Doppler peak appear in many cases. Fur-

thermore, it was found that Doppler peaks whose position is close to the wave velocity-Doppler

frequency became dominant (1) as the wave slope increased, (2) as the incident angle decreased,

(3) as the wave amplitude increased and (4) as the illuminated area increased.

There is a tendency for the wave phase velocity-Doppler peaks to become prominent, where

the wave slope parameter 2πAw0/λw0 is close to tan θi. Therefore, we can interpret the appear-

ance of the Doppler peak as the dominance of the “quasi-coherent scattering.” Here, the phase

difference of the reflected radio wave is small within the illuminated area. Based on this inter-

pretation, we can understand findings (1), (2) and (3) above as conditions for the appearance

of the wave phase velocity-Doppler peak. It may appear that the finding (4) contradicts with

other findings, however, this is not the case. As the illuminated area increases, the components

in the scattered signals which vary along the phase of the surface wave significantly vanish,

because the phase difference of these components is large within the illuminated area. As a

result, the phase of the scattered radio waves contributing to the reception by the antenna is

almost uniform, and we can interpret scattering in Figure 8d as quasi-coherent scattering.

It is possible to explain the fact that the Bragg frequency is identically equal to both the
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Doppler shift derived from the phase velocity of the Bragg wave and the wave frequency of

the Bragg wave in the same manner. As explained in Section 1 and Appendix A (Eq. (A16)),

the Doppler frequency is equal to the frequency of the wave acting as a scatterer. On the

other hand, in the case of Bragg scattering, that is, in the case that the illuminated length is

large, the phase of the scattered radio waves contributing to the reception by the antenna is

uniform. Therefore, the Doppler frequency by the Bragg wave is also equal to the Doppler shift

corresponding to the phase velocity of the Bragg wave.

It should be noted that it is impossible to verify the results in Section 3 by the radar ob-

servation of the sea due to the overshadow by Bragg scattering. Even by the investigation

of scattering from mechanically generated waves in the laboratory wave-tank experiment, the

verification may be difficult. If anyone would like to verify these results, it may be necessary to

investigate the scattering from “artificial conducting surfaces.” Furthermore, we should investi-

gate radio wave scattering for the ocean remote sensing using IEM and a sophisticated surface

wave model.
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Appendix A: Extension of first-order theory to finite illuminated

area

Here, the author derives a small perturbation method for a finite illuminated area using the

standard procedure by Rice [1951]. The magnetic field H = (H, 0, 0) is expressed using the
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Rayleigh hypothesis as

H = HA + 2GT (y, 0) exp(i(ω0t− ki sin θiy)) cos(ki cos θiz), (A1)

where HA is the scattered magnetic field written as

HA =

∫
K
dA(K) exp(i(ωt− ky − κ(k)z)), (A2)

K = (ω, k) κ(k) = (k2i − k2)1/2 (A3)

and k is the one-dimensional wave number vector, where dA is a random variable. The second

term at the right of Eq. (A1) is the sum of incident and reflected field, and it does not contributes

to scattering to the backscattering direction. We write surface displacement in Fourier-Stieltjes

representation as

η(y, t) =

∫
K
dN(K) exp(i(ωt− ky)), (A4)

where dN is a random variable. Using the the boundary condition (ns ·∇)H = 0 on the surface

z = η, the random variable dA in Eq. (A2) is calculated by expanding the power series of η to

the first order as

dA(K) = GT (y, 0)fA1(k)dN(K−K0), (A5)

where

fA1(k) =
−2iki(k sin θi − ki)

κ(k)
, (A6)

and where K0 ≡ (ω0, k0) = (ω0, ki sin θi).

Then, we can calculate the far-field scattered field Hs(t) using the tangential component of

magnetic surface current Jt = −H from Eq. (17) by expanding the power series of η. We can

write the first order term as

Hs(t) =
1

2

( ki
Leff

) 1
2 exp(−i(kiR +

3π

4
))

∫
K
dN(K−K0)f1(k) exp(iωt), (A7)
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where

f1(k) =
[∫ D

−D
exp(−i(k + k0)y

′)GT (y′, 0)dy′
]
[cos θifA1(k) + 2i(ki − k sin θi)] (A8)

If we assume that dN is a Gaussian process with zero mean, by using the relation

⟨dN(K)dN(−K1)⟩E = X(K)δ(K−K1)dKdK1, (A9)

where X(K) is a frequency-wave number ocean wave spectrum, and where ⟨. . .⟩E denotes en-

semble averaging, we can calculate the first-order radar cross section as

σ1(ω) =
ki

4Leff

∫
k
|f1(k)|2X(K−K0)dk. (A10)

We can simplify the radar cross section using

X(K) =
1

2

∑
m=±1

S(mk)δ(ω −m(g|k|)1/2), (A11)

S(mk)dk = Ψ(m)(ω)dω (m = ±1; k =
ω2

g
) (A12)

and

Ψ(ω) = Ψ(−1)(ω) + Ψ(1)(ω) (A13)

as

σ1(ωD) =
ki

8Leff

∑
m=±1

|f1(−mk + k0)|2Ψ(m)(|ωD|) (for ωD < 0, k =
ω2
D

g
) (A14)

σ1(ωD) =
ki

8Leff

∑
m=±1

|f1(mk + k0)|2Ψ(m)(|ωD|) (for ωD > 0, k =
ω2
D

g
) (A15)

where S(k) is a wave number spectrum, and Ψ(−1)(ω) and Ψ(1)(ω) are wave frequency spectra

composed of waves propagating to negative and positive directions, respectively. Thus, the

following equation is derived:

σ(ωD) = Fc(−mk)Ψ(|ωD|) (A16)
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for waves propagating to the negative direction, where

Fc(k) =
2ki
Leff

[∫ D

0
cos((k + 2ki sin θi)y

′)GT (y′, 0)dy′
]2

(ki cos2 θi − k sin θi)
2
∣∣∣1 +

ki cos θi
κ(k0 + k)

∣∣∣2, (A17)

and k = ω2
D/g. The sign m in Eq. (A16) is −1 for ωD < 0 and m = 1 for ωD > 0.

Equations (A14) and (A15) are reduced for D −→ ∞ and  Leff −→ ∞ as

σ1(ωD) = 4πk3i (1 + sin2 θi)
2S(−mk)δ(ωD −m(2gk0)

1/2), (A18)

and Eq. (A18) is the radar cross section for Bragg scattering.
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Table

f0 = ω0/(2π) radio frequency 1 GHz

θi incidence angle 45◦

fB = ωB/(2π) Bragg frequency 2.71 Hz

vB Bragg wave phase velocity 0.575 ms−1

Leff effective length 1 m

D integration range 10 m

Nt total number of time series 512

M number of divisions in the range 1000

∆t time step to calculate scattered signal 0.05 s

λw0 = 2π/kw0 wavelength 20 m

fw0 = ωw0/(2π) wave frequency 0.28 Hz

fpD Doppler frequency corresponding to 26.36 Hz

the peak wave phase velocity

Table 1: Examples of parameters to calculate scattered signal.
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Figures and captions
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Figure 1: Scattering geometry.
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Figure 2: Doppler spectra estimated from MFIE for small wave amplitudes Aw0. (a) Aw0 =

0.01 m, (b) Aw0 = 0.05 m, (c) Aw0 = 0.1 m, (d) Aw0 = 0.5 m.
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Figure 3: Doppler spectra estimated from MFIE for large wave amplitudes Aw0. The arrows

on the upper horizontal axis indicate the position of the wave velocity-Doppler frequency. (a)

Aw0 = 1.0 m, (b) Aw0 = 1.5 m, (c) Aw0 = 2.0 m, (d) Aw0 = 2.5 m.
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Figure 4: Comparison of Doppler spectra estimated from KA (solid line) and MFIE (dashed

line). Note that the dashed line overlaps the solid line.
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Figure 5: Doppler spectra for various radio frequencies estimated from KA. Radio frequencies

are respectively f0 = 1, 2, 5 and 10 GHz from top to bottom. Each Doppler spectrum is plotted

by shifting 100 dB from the top. The arrows on the upper horizontal axis indicate the positions

of the wave phase velocity-Doppler frequencies for each radio frequency.
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Figure 6: Same as Figure 5 but θi = 15◦. Each Doppler spectrum is plotted by shifting 150 dB

from the top.
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Figure 7: Doppler spectra for various wave amplitude Aw0 = (1/20)λw0 m and θi = 15◦ es-

timated from KA. The arrows on the upper horizontal axis indicate the positions of the wave

phase velocity-Doppler frequencies for each wave amplitudes (wavelengths). (a) Aw0 = 0.01 m,

(b) Aw0 = 0.1 m, (c) Aw0 = 1 m, (d) Aw0 = 10 m.
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Figure 8: Doppler spectra for various effective lengths Leff estimated from KA. The arrows on

the upper horizontal axis indicate the positions of the wave phase velocity-Doppler frequencies

for each radio frequency. (a) Leff = 0.1 m, (b) Leff = 0.3 m, (c) Leff = 1.0 m, (d) Leff = 5.0 m.
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