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Abstract

If a swell propagating over a long distance is dominant, existing spectral

wave models will produce unphysical oscillations in the model-predicted wave

height field as a result of finite spectral resolution. This is called the Garden

Sprinkler Effect (GSE), which is more apparent with high-accuracy propa-

gation schemes. Here, an interpolation method to remove the GSE is de-

veloped. This method involves retrieving the higher-resolution wave spec-

tra from lower-resolution wave spectra that are predicted not from a GSE-

alleviating scheme but from a shape-preserving advection scheme, by consid-

ering the spatial distribution of spectra. Using this method both the removal

of the GSE and the preservation of the spatial distribution of spectral values

can be attained almost completely.
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1. Introduction

It is important to include swell predictions in wave forecasting. A wave

spectral energy or action balance equation such as

DF

Dt
= S (1)

can be solved for wave forecasting, where t is a time, F is the ocean wave

spectrum, S is the net source function, and D/Dt represents the total deriva-

tive moving with the wave component (e.g., Komen et al. (1994)). If we only

consider spatial propagation, assuming that other terms may either be ne-

glected or treated separately by time-splitting methods (e.g., WISE Group

(2007)), equation (1) reduces to a propagation equation.

The propagation equation in Cartesian (x, y) coordinates for deep water

is
∂F

∂t
+

∂(cg cos θF )

∂x
+

∂(cg sin θF )

∂y
= 0, (2)

where F = F (ω, θ, x, y, t) is the ocean wave spectrum at the position (x, y),

radian frequency ω, direction θ with respect to the x− direction and time

t, and cg is the group velocity. A shape-preserving advection scheme for

solving the propagation equation (2) is required to predict swells that travel

a long distance. The term ”shape-preserving” means that spatial structure

of features in a single spectral component advected in space is maintained

by a given numerical scheme.

A high-resolution model is preferred for wave forecasting; however, the

limited ability of computers limits the resolution. If the resolutions of wave

frequency and direction are coarse, a numerical artifact known as the Garden

Sprinkler Effect (GSE) occurs when a swell is propagated over a long distance
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(e.g., Booij and Holthuijsen (1987)). The spatial distribution of wave heights

cannot be accurately predicted due to this artifact. A GSE-alleviation scheme

is necessary to predict the spatial distribution of wave heights. A shape-

preserving scheme with insufficient resolution results in the display of the

GSE (e.g., WISE Group (2007)), and therefore requires GSE alleviation.

The numerical diffusion is significant for the first-order upwind scheme,

and such a scheme is not shape-preserving. The GSE is not clearly seen in the

spatial distribution of wave heights for the first-order upwind scheme. There-

fore, the first-order upwind scheme is adopted in WAM cycle 4 (Janssen,

2008). However, the numerical diffusion is unrelated to physical dispersion,

and this method is not valid as a GSE alleviation method (e.g., WISE Group

(2007)).

Some existing schemes to reduce the GSE are based on the spatial aver-

aging of waves at the expense of the shape-preserving property of the high-

order-accuracy scheme for the propagation equation. For example, Booij and

Holthuijsen (1987) developed a method to alleviate the GSE by adding a dif-

fusion term to equation (2), which is derived to describe sub-grid dispersion

in a model with insufficient spectral resolution. Lavrenov and Onvlee (1995)

developed a GSE-alleviating method by averaging wave energies of different

directions, in which energy may be spread over all directions.

Tolman (2002) developed a GSE-alleviating method by averaging wave

energies of different frequencies and directions to improve computational

economy. Tolman (2002) also developed a GSE-alleviating method called

divergence method. This method consists of adding divergence, representing

the difference between spectral bin-mean and spectral bin-centric propaga-
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tion, to the advection field.

The spatial distribution of the energy in a single spectral bin becomes

smoother for the GSE-alleviating method, while the initial distribution is

advected with minimal change of shape for the so-called ”plain ULTIMATE

QUICKEST scheme,” which is almost shape-preserving (Fig. 10 in Tolman

(2002)).

We have developed a new method to alleviate the GSE by post-processing

spectra from a wave model run which also allows us to retrieve high-resolution

spectra. The initial wave shape is almost completely preserved except for the

influence of the numerical diffusion of the high-order-accuracy propagation

scheme. The method involves interpolating high-resolution wave spectra from

low-resolution wave spectra that are predicted not from a GSE-alleviating

scheme but from a shape-preserving advection scheme such as the Cubic

interpolated propagation (CIP) method (Yabe and Aoki (1991)) or the UL-

TIMATE QUICKEST scheme (Leonard (1991)).

The GSE is explained in section 2. The method to remove the GSE from

predicted wave spectra is presented in section 3. This method is applied

to predicted wave spectra both for the ideal case and a practical case in

section 4. The advantage of the present method is also demonstrated in sec-

tion 4. Section 5 presents conclusions and discussions for future explorations

of this subject.

2. Garden Sprinkler Effect

Consider equation (2). The solution of equation (2) is

F = F0(ω, θ, x − cg cos θt, y − cg sin θt), (3)

4



where F0 = F0(ω, θ, x, y) is the wave spectrum at time t = 0.

The variable (log(ω), θ, x, y, t) of the wave spectrum F is discretized in

equal steps : The radian frequency is ωi+1 = rωωi, where i is the discrete

grid index number in ω-space, and rω is a constant greater than 1. The wave

direction is θj = −π + j∆θ = −π + 2πj/M , j is the index number of the

direction, ∆θ = 2π/M is the resolution of the direction, and M is the number

of directions. The spatial resolution is (∆x, ∆y), and the time step is ∆t.

Wave-height estimation from (3) for two spectral resolutions are shown

in Figure 1. The time is t = 125 hour, and the initial wave spectrum is

F0(ω, θ, x, y) =
H2

0

8π
√

2πωσ

exp(−(ω − ωp)
2

2ω2
σ

)[max(cos(θ − θp), 0)]2, (4)

where

H0 = Hs exp(− r2

2r2
L

) (5)

is the initial wave height, r2 = (x − x0)
2 + (y − y0)

2, (x0, y0) = (0, 0), Hs =

2.5 m, rL = 150 km, ωp/(2π) = 0.1 Hz, ωσ/(2π) = 0.01 Hz, and θp = 30◦.

These are almost same parameters as those in Tolman (2002).

The significant wave height is estimated by integrating the wave spectrum

F with respect to ω and θ, but the spectral values are estimated only at

discretized frequencies ωi and directions θj. The spectral values F at other

frequencies and directions are interpolated only in the ω − θ plane.

Figure 1a shows the significant wave height from Eqs. (3) and (4) for

rω = 1.1 and ∆θ = 15◦ (M = 24), which is referred to as the coarse-

resolution case. The spatial resolution is ∆x = ∆y = 100 km. The initial

wave spectra F0 at the position of (x−cg cos θt, y−cg sin θt) (right-hand side

of Eq. (3)) are estimated by the bilinear interpolation of F0(ω, θ, x, y, t) in
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the x − y plane. The GSE is seen in Figure 1a, even though Eq. (3) is the

exact solution of (2).

Figure 1b shows the significant wave height for rω = 1.11/2 and ∆θ = 3◦

(M = 120), referred to as the fine-resolution case. The GSE cannot be seen

in Figure 1b.

Figure 2 shows the normalized F as a function of wave direction θ at

(ω/(2π), x, y) = (0.1 Hz, 3000 km, 1800 km) and (ω/(2π), x, y) = (0.1 Hz,

3400 km, 1400 km) for the coarse-resolution ((rω, ∆θ) = (1.1, 15◦)) and fine-

resolution case ((rω, ∆θ) = (1.11/2, 3◦)). The values in Figure 2a and b are

respectively normalized by the maximum of F (0.2π s−1, θ, 3000 km, 1800 km)

and F (0.2π s−1, θ, 3400 km, 1400 km) for the fine-resolution case.

The sampled spectral values for the coarse-resolution case are equal to

those for the fine-resolution case (Figure 2a). If the spectral peak value is

sampled in the coarse-resolution case, the integrated value of F with respect

to θ is overestimated (Figure 2a). If the spectral peak is not sampled in

the coarse-resolution case ((rω, ∆θ) = (1.1, 15◦)), the integrated value of F

is underestimated (Figure 2b). Therefore, the GSE occurs as in Figure 1a;

the wave heights at positions in the direction of θj from (x, y) = (0, 0) are

overestimated, and wave heights at other positions are underestimated.

Waves coming from far away are approximately parallel to each other.

The directional distribution of the wave spectrum is so narrow that the di-

rectional distribution cannot be resolved by the coarse directional resolution.

The frequency spectrum for the waves travelling a long distance is also narrow

because of the dispersion of the waves.

Equations (3) and (4) give an exact solution of the propagation equation
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(2), regardless of any spectral and spatial discretization. Figure 1 shows the

significant wave height computed using (3) and (4) only at the discrete fre-

quencies and directions, so the GSE arises from integrating a finite-resolution

spectrum with insufficient resolution to resolve the narrow peak, not because

of any inexactness in Eq. (3) where it is applied.

Figure 3 shows the contours of the wave spectra F (ω, θ, x, y, t) at (ω/(2π), t)

= (0.1 Hz, 125 hour). Figure 3a, b and c show the contours of F for the

coarse-resolution case at θ = 15◦, θ = 30◦, and θ = 21◦, respectively. Fig-

ure 3d, e and f show the contours of F for the fine-resolution case at θ = 15◦,

θ = 30◦, and θ = 21◦, respectively. The spectral values at θ = 21◦ for the

coarse-resolution case (Figure 3c) are estimated by interpolation in the ω−θ

plane.

The contours of F for θ = 15◦ in Figure 3a and in Figure 3d are the

same. The contours in Figure 3b are the same as those in Figure 3e. The

contour pattern in Figure 3a is similar to that in Figure 3b. The difference

between Figures 3a and b is described as largely a horizontal displacement of

the whole contour pattern. The contour pattern in Figure 3c is dissimilar to

those in Figure 3a and b. On the other hand, the contour pattern in Figure 3f

is similar to those in Figure 3d and e except for the position of contours. The

contours of F for θ = 21◦ are located between those for θ = 15◦ and θ = 30◦,

and the contour levels are also between them. The poor result in Figure 3c

is an artifact of the interpolation in spectral space: for all other plots, the

exact spectra calculated from (3) and (4) at a single spectral bin are used.

The wave directions in Figure 3a and b neighbor each other in the coarse-

resolution case: the difference in the direction is ∆θ = 15◦. In the case of the
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GSE, the locations of the wave spectrum contours at neighboring frequencies

and directions are different, while they are close to each other in the case

without the GSE. In this example, the distance is greater than 3 grid cells

when the GSE can be seen.

We can deduce the contour of θ = 21◦ from Figure 3d and e as Figure 3f.

The method of drawing the contour of F at θ = 21◦ from the contours of F

at θ = 15◦ and θ = 30◦ is considered. Figure 3f is valid based on Figure 3d

and e.

Our method for removing the GSE is based on a procedure to interpolate

the spectral values by spatial distribution of spectra. Both the contour level

and the location of the contour pattern are interpolated. This also applies

to the interpolation with respect to the wave frequency.

3. Method

3.1. Principle

We consider the interpolation of the spectral values F (ω, (θa+θb)/2) from

F (ω, θa) and F (ω, θb) (t or (x, y) is omitted). Figure 4 shows a schematic

illustration of the interpolation.

The contour lines of F (ω, θa) are drawn in the x− y plane as blue curves,

and the contour lines of F (ω, θb) are drawn as red curves in Figure 4. The

contour lines of F (ω, (θa+θb)/2) are located in the middle of those of F (ω, θa)

and F (ω, θb). The local maximum point of F (ω, (θa + θb)/2) in the x − y

plane (C in Figure 4) is the mid-point of those of F (ω, θa) (A in Figure 4) and

F (ω, θb) (B in Figure 4), i. e., ~AC = ~CB. The spectral value F (ω, (θa+θb)/2),

at the position of C in Figure 4 is interpolated as F (ω, (θa + θb)/2, C) = 1/2
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[F (ω, θa, A) + F (ω, θb, B)]. The spectral value at the position R (Figure 4),

which is near the position of C, is also interpolated as F (ω, (θa + θb)/2, R) =

1/2 [F (ω, θa, P) + F (ω, θb, Q)], where P and Q are positions satisfying ~AP

= ~BQ = ~CR in Figure 4.

Although the points A, B, P and Q in Figure 4 are on grid points in the

x−y plane, the interpolated points C and R are not on grid points in the x−y

plane. In this case, the spectral values F (ω, (θa + θb)/2) on the grid points

in the x− y plane are interpolated. The interpolation of F (ω, (θa + θb)/2) by

this method is done for the position around C in Figure 4. In other areas of

the x − y plane, the spectral values F (ω, (θa + θb)/2) are interpolated with

respect to (ω, θ).

It is possible to interpolate the spectral values F (ωq, θq, x, y) from F (ωa, θa, x, y),

F (ωa, θb, x, y), F (ωb, θa, x, y), and F (ωb, θb, x, y) where ωq is the radian fre-

quency of ωa < ωq < ωb, and θq is the direction of θa < θq < θb in the

similar way. The details of the interpolation are written in Sections3.2, 3.3

and Appendix A.

3.2. Interpolation of the spectrum

The method to remove the GSE is to estimate the spectrum F = Fq at

(ωq, θq), where ωa < ωq < ωb, θq is in the direction of θa < θq < θb, and (ωa,

ωb, θa, θb) is

ωa = ωi, (6)

ωb = ωi+1 = rωωi, (7)

θa = θj, (8)

θb = θj+1 = θj + ∆θ. (9)
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Figure 5 shows a schematic illustration of the interpolation of the spectral

values. Consider the contour lines of

Faa = F (ωa, θa, x, y), Fab = F (ωa, θb, x, y), (10)

Fba = F (ωb, θa, x, y), Fbb = F (ωb, θb, x, y) (11)

in the x − y plane. The P1, P2, P3, and P4 in Figure 5 are local maxima of

Faa, Fab, Fba and Fbb, respectively. It may be better to obtain P2 from P1 by

calculating the cross-correlation between Faa and Fab, but P2 was obtained

by searching for the local maximum of Fab to reduce the computation time.

The x − y coordinate was normalized by ∆x, and ∆y. The normalized

x−y coordinates (grid numbers) of P1, P2, P3, and P4 are (M1, N1), (M2, N2),

(M3, N3), and (M4, N4), respectively. The quadrangle P1P2P3P4 is almost a

parallelogram, because P1P2 is the difference of the wave-travelling distances,

and ∆θ is much smaller than unity. The groups of the grid points surrounding

the contours Faa, Fab, Fba, and Fbb are C1, C2, C3, and C4, respectively

(Figure 5).

The areas of Cm (m = 1, 2, 3, 4) were set to be squares with length 2L and

with centers Pm (m = 1, 2, 3, 4) to code the program easily. The normalized

coordinate of Cm (m = 1, 2, 3, 4) is (qm,x(i), qm,y(j)), where

qm,x(i) = i + Mm, i = −L, .., 0, .., L (12)

qm,y(j) = j + Nm, j = −L, .., 0, .., L (13)

which are indicated by green, brown, black and red points in Figure 5.

The group of grid points surrounding the contours Fq is C (blue points

in Figure 5). The area of C is a square with the length of 2L and with the
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center P . The spectral value Fq in the area of C was interpolated from the

spectral values Faa in the area of C1, Fab in the area of C2, Fba in the area of

C3, and Fbb in the area of C4.

3.3. Summary of the method

The procedure for estimating the spectrum F = Fq at (ωq, θq) can be

summarized as follows:

1. The local maximum positions of Faa = F (ωa, θa, x, y), Fab = F (ωa, θb, x, y),

Fba = F (ωb, θa, x, y), and Fbb = F (ωb, θb, x, y) in the x − y plane Pm

(m = 1, 2, 3, 4) are obtained, identified on Figure 5 as points Pm (m =

1, 2, 3, 4),

2. If there are multiple local maxima of the spectral value in the x − y

plane, the groups of Pm are selected so as to minimize the distance

between them.

3. If the positions Pm are close to each other to within order 3 grid cells,

the spectrum F = Fq at (ωq, θq) is interpolated only in the ω− θ plane.

4. Otherwise, the spectrum F = Fq at (ωq, θq) is interpolated as explained

below, and in more detail in Appendix A.1 and Appendix A.2.

5. An equal-sized square spatial subgrid is defined around each of the

four local maxima Pm, containing grid cells (qm,x(i)qm,y(j)), for (i, j=

−L, .., 0, .., L) (Eqs. (12) and (13)). The length L is set to the maximum

value that ensures that at least one of the four subgrids contains only

spectral densities F greater than ε times the local peak value, where

ε is a tunable parameter. A more detailed definition of L is given in

Equations (A.28) and (A.29) of the Appendix A.2. An adjustable

global upper limit Lth is also set on the value of L.
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6. A pair of subgrid indices (i, j) corresponds to the points Qm (m =

1, ..., 4) on the four subgrids (Figure 5 ). We define a corresponding

point Q for the target spectral coordinates (ωq, θq), located at the in-

terpolated spatial grid coordinates:

(qx(i), qy(j)) =
4∑

m=1

Wm(qm,x(i), qm,y(j)) (14)

with weights Wm given by bilinear interpolation in ω and θ as detailed

by Equations (A.3)–(A.6) in Appendix A.1.

7. The spectral density F at Q is interpolated using the same weights,

i.e.,

F (ωq, θq, qx(i), qy(j)) =
4∑

m=1

WmF (ωabm, θabm, qm,x(i), qm,y(j)) (15)

where

ωab1 = ωab2 = ωa, ωab3 = ωab4 = ωb, (16)

θab1 = θab3 = θa, θab2 = θab4 = θb. (17)

8. The grid coordinates (qx(i), qy(j)) do not in general correspond to the

integer values required for final output. Hence a final step of bilinear

spatial interpolation of the spectrum is required from the grid consisting

of the set of points {(qx(i), qy(j)), i, j = −L, ..., 0, ..., L} to the parts of

the integer-valued output grid lying within it. Outside this region, the

spectral values Fq are obtained by interpolation in the ω − θ plane.

More details of this interpolation are given in Appendix A.2.

The interpolation is done from spatially correlated areas of wave spectra.

The contour patterns of wave spectra F (ωabm, θabm) in Cm (m = 1, 2, 3, 4),
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are similar to each other, which means that the wave spectra in the area

are spatially correlated, where (ωabm, θabm) are given in Eqs. (16) and (17),

and Cm are shown in Figure 5 . The areas Cm (m = 1, 2, 3, 4 ) should

be determined to maximize the cross correlations of Faa, Fab, Fba, and Fbb

(Eqs. (10) and (11)) and the relation (A.29); however, the calculation of the

cross-correlation is omitted to reduce the computation time. The method

described in this section is called the space correlation interpolation method

(SCIM).

4. Results

4.1. Ideal case

Figure 6 shows examples of the application of the SCIM. The wave pa-

rameters are the same as those in Figure 1a. The spectra F were estimated

from Eq. (3) for the coarse-resolution case ((rω, ∆θ) = (1.1, 15◦)), and the

SCIM was applied to remove the GSE.

The frequency resolution and direction resolution of interpolated spec-

tra were rω = 1.11/2, and ∆θ = 0.5◦. It was impossible to store the ar-

ray F (ω, θ, x, y) in the memory of our personal computer for such a high-

resolution spectrum. However, it was unnecessary to save the array F (ω, θ, x, y)

in the computer memory only for estimating wave parameters.

The parameter ε in (A.29) is ε = 10−2 in Figure 6a. The maximum value

of L, which varies with (ωa, θa) = (ωi, θj), is 5. The GSE is removed in

Figure 6a, but the removal is incomplete. The local maxima of the wave

heights can be seen in Figure 6a.

The parameter ε in Eq. (A.29) is ε = 10−10 in Figure 6b. The maximum

13



value of L is 9. The GSE is almost completely removed in Figure 6b except

near the boundary in Figure 6b. The SCIM is done within the area of −1000

≤ x, y ≤ 4500 km, and the spectra near the boundary are not interpolated.

There are no effects of local winds on waves in the ideal case. Therefore,

the parameter ε (Eq. (A.29)) must be small, and L must be large, because

spectra on the area outside the C (Figure 5) are interpolated only on the

ω− θ plane. If the spectral values outside C are set to be 0, the GSE can be

almost completely removed for larger ε. However, the real waves are affected

by local winds, and it is necessary to set the parameter ε larger than 10−10.

4.2. Advantage of the SCIM

Figure 7 shows the comparison of wave spectra F (ω, θ) at (x, y) = (3000 km,

1800 km). Figure 7a is the wave spectrum obtained from the low-resolution

spectra ((rω, ∆θ) = (1.1, 15◦)) by the SCIM. Figure 7b is the wave spectrum

obtained from (3) and (4). The initial wave spectra F0 at the position of

(x − cg cos θt, y − cg sin θt) (right-hand side of Eq. (3)) were estimated from

(4) and not from the bilinear interpolation in the x − y plane. The spectral

resolution was (rω, ∆θ) = (1.11/2, 0.5◦). Figure 7c is the wave spectrum ob-

tained from (3). The initial wave spectra at the position of (x − cg cos θt,

y− cg sin θt) were estimated from the bilinear interpolation, and the spectral

resolution was (rω, ∆θ) = (1.11/2, 1◦). Figure 7d is the wave spectrum for the

coarse-resolution case ((rω, ∆θ) = (1.1, 15◦)).

The wave spectral distribution is broad and the wave energy is over-

estimated for the coarse-resolution case (Figure 7d). The wave spectrum

retrieved by the SCIM (Figure 7a) is similar to both Figure 7b and c. How-

ever, the spectral peak values of Figure 7a and c are smaller than that of
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Figure 7b, because the spatial resolution (∆x = ∆y = 100 km ) is not enough

to resolve the initial wave height distribution, whose width rL (Eq. (5)) is

150 km. Although there are some differences, it is shown that the SCIM can

retrieve high-resolution spectra from low-resolution spectra.

Figure 8 shows wave spectra F (ω, θ) at (ω/(2π), θ) = (0.1(1.1)1/2Hz, 25◦)

for t = 8.3, 50, 91.6 and 133.3 hours retrieved by the SCIM. The spectral

values at (ω/(2π), θ) = (0.1(1.1)1/2Hz, 25◦) were interpolated from F (ωi, θj),

F (ωi, θj+1), F (ωi+1, θj), F (ωi+1, θj+1) for the coarse-resolution case ((rω, ∆θ) =

(1.1, 15◦)), where ωi/(2π) = 0.1 Hz, and θj = 15◦. The contour patterns

are advected along the 25◦ line (dashed line in Figure 8). If the shape-

preserving advection scheme is used, there is no spectral dispersion in the

present method. The advantages of the SCIM are that a spectral value at a

single spectral bin is preserved (Figure 8), and that it is possible to estimate

high-resolution spectra (Figure 7).

4.3. Case of dual swell systems

The case of dual swell systems passing across each other is investigated.

The initial wave spectra for one of the swell systems were the same as those in

Figure 1 (Eqs. (4) and (5)) and parameters of them ). The other initial wave

spectra were also described by Eqs. (4) and (5) but for (x0, y0) = (0, 3000 km),

Hs = 2.1 m, rL = 135 km, and ωp/(2π) = 0.11 Hz. The swell directions at the

position (x, y) (x > 0), which is far from the swell sources, are Arctan(y/x)

and Arctan((y − y0)/x) (y0 = 3000 km).

Figure 9a is the predicted wave height for the coarse-resolution case (t =

125 hour). The directional GSE from (x, y) = (0, 0) and (x, y) = (0, 3000 km)

can be seen in Figure 9a. Figure 9b is the predicted wave height for the fine-
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resolution case, and the GSE cannot be seen in Figure 9b. Figure 9c is the

wave height estimated by the SCIM. There are cases in which the F (ωi, θj) in

the x−y plane has two local maxima associated with different swell systems.

In these cases, the group of local maxima (P1, P2, P3, and P4 in Figure 5) were

selected so as to be as close to each other as possible (step 2 in section 3.3).

The GSE was removed in Figure 9c.

4.4. Practical application

The wave model was run and wave spectra were predicted. The source

function of the energy balance equation was the same as that of the WAM

cycle 4 (e.g., WISE Group (2007); Janssen (2008)), and the propagation

term was transferred to a spherical grid (e.g., WAMDI Group (1988)). The

cubic interpolated propagation (CIP) method (Yabe and Aoki (1991)), which

preserves the waveform almost completely, was used to solve the propagation

equation. The spatial resolution was 0.5◦, and the spectral resolution was

(rω, ∆θ) = (1.1, 15◦). The ECMWF ERA-Interim surface wind data were

used to predict wave data.

In practical conditions, swells are not generally the major source of local

wave energy. Therefore, the GSE is unclear in the contour map of the sig-

nificant wave height (e.g., Tolman (2002)). The peak period is the indicator

of the GSE.

Figure 10 shows the predicted peak period Tp = 2π/ωp and peak direction

θp, where (ωp, θp) maximizes the F (ω, θ), in the northwest Pacific Ocean at

6 UT on May 22, 2008. The GSE can be seen in Figure 10. The peak wave

directions in the area where ocean swells reach are scattered. For example,

the peak wave direction is southeastward at (17◦ N, 140◦ E), where the peak
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period Tp is about 10 s. The peak wave direction is southwestward at (12◦

N, 140◦ E).

A storm passed near the Pacific coast of Japan, and a swell was generated

by the storm. The position of the storm was (30◦ N , 133◦ E) on May 20,

2008, with a wind speed greater than 20 m/s.

Figure 11 shows the wave spectra F (ω, θ) at (ω/(2π), θ) = (0.0751 Hz,

−60◦), (0.0751 Hz, −45◦), (0.0826 Hz, −60◦), and (0.0826 Hz, −45◦). The

frequencies and directions are adjacent to each other for the coarse-resolution

case ((rω, ∆θ) = (1.1, 15◦)). The positions of the contours are significantly

different from each other, in particular, for neighboring directions. The SCIM

must be applied to estimate wave spectra F (ω, θ) for 0.0751 < ω/(2π) <

0.0826 Hz and −60◦ < θ < −45◦.

Figure 12 shows the peak period Tp and peak direction θp at 6 UT on May

22, 2008. The SCIM was applied to the predicted wave spectra. The value

of ε in (A.29) was 0.1, which is larger than that for the ideal case, because

wave spectra are affected by local winds. The width 2L of Cm (m = 1, 2, 3, 4,

Figure 5) was not determined only from (A.29), and the parameter Lth was

25.

The resolution of the wave spectrum was (rω, ∆θ) = (1.11/2, 0.5◦). The

peak frequencies ωp and directions θp were searched for from the high-resolution

spectra. The GSE could be removed in Figure 12. The propagation of

the swell from the center of the storm was predicted. The contour lines of

Tp > 11 s are almost concentric circles, and peak wave directions are in the

radial direction of the circles.
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5. Discussion and conclusions

If the wave frequency or direction resolution is too coarse to resolve a

narrow-band wave spectrum, the GSE appears. In this work, a new method

is developed to remove the GSE. In previous studies (e.g., Booij and Holthui-

jsen (1987); Tolman (2002)), the spectrum at the radian frequency ω and the

direction θ is considered to be the average of the spectral values in the fre-

quency and direction band. In these studies the GSE is alleviated by either

introducing diffusion terms (Booij and Holthuijsen (1987)), or by spatial av-

eraging of each spectral component (Tolman (2002)).

On the other hand, the SCIM is intended to retrieve a high-spectral-

resolution spectrum from a low-spectral-resolution spectrum. The problem

of the GSE being more apparent with propagation schemes of higher-order

accuracy is resolved by the SCIM. The wave spectra were calculated without

a GSE-alleviating method. No additional computing time was required for

computing the wave spectra. The SCIM can be applied to archived wave

spectra when GSE occurs. Because data storage is limited, it is better to

apply the SCIM only where necessary. However, the additional computation

time of the post-processing is required.

The positions of the contour patterns of spectral values of neighboring

frequencies and directions are indicators of the GSE. If the positions differ

from each other, GSE occurs. The spectral values at sampled frequencies

and directions were not modified. There was no spatial smoothing of the

spectra. Although there are no physics in the SCIM, the SCIM is more valid

for interpolating wave spectra than interpolation on the ω − θ plane.

There are some issues to be addressed. The first is how we decided the
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length L (Eqs. (12),(13)), where 2L is the width of Cm (m = 1, 2, 3, 4, Fig-

ure 5), because the SCIM is dependent on L.

The second is that the SCIM was applied near a coastal area. The areas

of Cm (m = 1, 2, 3, 4) are assumed to be square with the center of local

maxima Pm (m = 1, 2, 3, 4). It is assumed that the contour patterns of Faa,

Fab, Fba, and Fbb (Eqs. (10) and (11)) are similar to each other. However, if

Cm (m = 1, 2, 3, 4) is the square, the land may be included in Cm. If the land

is a small isolated island, it is possible to interpolate a spectral value on the

grid point. However, if the land is not a small isolated island, the assumption

that contour patterns of Faa, Fab, Fba, and Fbb are similar to each other is

not valid. In this case, the areas Cm are not squares to avoid the land. The

areas Cm were determined to maximize the cross correlations of Faa in C1,

Fab in C2, Fba in C3, and Fbb in C4. In addition, these spectral values on

the boundaries of Cm must be much smaller than the local maxima of the

spectra.

The third is the effect of the GSE on the source function. The wave model

was run without a GSE-correcting scheme, so some source function may have

been affected by the GSE. It is not economical computationally to apply the

SCIM in every time step. However, issues have also been raised for GSE-

correcting schemes in previous studies, because the shapes of the spectra are

modified and broadened from the narrow band spectrum. Without a GSE-

correcting scheme, the narrow band spectral values are sampled at a coarse

frequency and direction step; with a GSE-correcting scheme in the previous

studies, the narrow band spectral values are averaged within broad frequency

and direction bands. The use of a previous GSE alleviation method with the
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SCIM may resolve the problems. These problems are the subjects of future

studies.
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Appendix A. Detailed description of the method

Appendix A.1. Weights for the interpolation

The spectral values at (ωa, θa), (ωa, θb), (ωb, θa), and (ωb, θb), for the

coarse-resolution case were almost accurate, where (ωa, ωb, θa, θb) is shown

in Eqs. (6)–(9). The spectral values Fq = F (ωq, θq, x, y), where ωq is the

radian frequency of ωa < ωq < ωb, and θq is the direction of θa < θq < θb,

were interpolated from the spectral values for the coarse-resolution case.

The local maximum grid point of contour Fq is P (Figure 5), and the

position in the normalized coordinate is (qcx, qcy), where

qcx =
4∑

m=1

WmMm, (A.1)
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qcy =
4∑

m=1

WmNm. (A.2)

The weight Wm (m = 1, 2, 3, 4) is

W1 =
(θb − θq)

∆θ

log(ωb/ωq)

log(rω)
, (A.3)

W2 =
(θq − θa)

∆θ

log(ωb/ωq)

log(rω)
, (A.4)

W3 =
(θb − θq)

∆θ

log(ωq/ωa)

log(rω)
, (A.5)

W4 =
(θq − θa)

∆θ

log(ωq/ωa)

log(rω)
. (A.6)

The spectral value Fq at the point Q with the position of (qx(i), qy(j)),

(i, j = −L, ..0, .., L) in the normalized x − y coordinate in Figure 5 was

interpolated from the spectral values Faa at the point Q1, Fab at the point

Q2, Fba at the point Q3, and Fab at the point Q4 from Eqs. (15), (16) and

(17).

Appendix A.2. Interpolation on wave grids in the x − y plane

The points (qx(i), qy(j)) may not be on the grid points as in Figure 5 (step

8 in section 3.3). The interpolation of the wave spectrum estimated from

Eq. (15) on the wave grid point is necessary. Figure 13 shows the schematic

interpolation of Fq at (qx(i), qy(j)) on wave grid points (red points).

In the case that

qcx = Icx, and qcy = Icy, (A.7)

where

Icx = int(qcx), and Icy = int(qcy), (A.8)
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the spectral values Fq on the grid points (qx(i), qy(j)) as

qx(i) = i + Icx, i = −L, .., 0, .., L (A.9)

qy(j) = j + Icy, j = −L, .., 0, .., L (A.10)

are estimated by Eq. (15).

In the case that

qcx = Icx, and qcy 6= Icy (A.11)

(Figure 13b and e), the interpolation of Fq at (qx(i), qy(j)) on wave grid

points is derived from the length of AR and AQ in Figure 13e as

F (ωq, θq, i + Icx, j + 1 + Icy) = w1F (ωq, θq, qx(i), qy(j))

+w2F (ωq, θq, qx(i), qy(j + 1)) (A.12)

i = −L, .., 0, .., L,

j = −L, .., 0, ., L − 1 (A.13)

where

w1 = qcy − Icy (A.14)

w2 = 1 − qcy + Icy. (A.15)

The right-hand side of Eq. (A.12) is estimated from Eq. (15).

In the case that

qcx 6= Icx, and qcy = Icy (A.16)

(Figure 13c), Fq on the wave grid is estimated as

F (ωq, θq, i + 1 + Icx, j + Icy) = w1F (ωq, θq, qx(i), qy(j))

+w2F (ωq, θq, qx(i + 1), qy(j)), (A.17)
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i = −L, .., 0, .., L − 1,

j = −L, .., 0, .., L (A.18)

where

w1 = qcx − Icx (A.19)

w2 = 1 − qcx + Icx. (A.20)

The right-hand side of Eq. (A.17) was estimated from Eq. (15).

In the case that

qcx 6= Icx, and qcy 6= Icy (A.21)

(Figure 13d and f), Fq on the wave grid was estimated as

F (ωq, θq, i + 1 + Icx, j + 1 + Icy) = w11F (ωq, θq, qx(i), qy(j))

+w21F (ωq, θq, qx(i + 1), qy(j))

+w12F (ωq, θq, qx(i), qy(j + 1))

+w22F (ωq, θq, qx(i + 1), qy(j + 1))

(A.22)

i = −L, ..0, .., L − 1,

j = −L, .., 0, .., L − 1, (A.23)

where

w11 = (qcx − Icx)(qcy − Icy), (A.24)

w21 = (1 − qcx + Icx)(qcy − Icy), (A.25)

w12 = (qcx − Icx)(1 − qcy + Icy), (A.26)

w22 = (1 − qcx + Icx)(1 − qcy + Icy). (A.27)

24



The right-hand side of Eq. (A.22) was estimated from Eq. (15).

Wave spectra at (ωq, θq) estimated from Eq. (15) or Eq. (A.12) or Eq. (A.17)

or Eq. (A.22) are only on positions surrounded by C in Figure 5 or red points

in Figure 13a–d. Wave spectra Fq at other points are interpolated on the

ω − θ plane.

The length of Cm (m = 1, 2, 3, 4, Figure 5) is a tunable parameter, which

was determined from

L = max(L1, L2, L3, L4). (A.28)

The parameter Lm was the maximum value satisfying

F (ωabm, θabm, qm,x(i), qm,y(j)) > εmax(F (ωabm, θabm, qm,x(i), qm,y(j)))

(A.29)

for all i = −Lm, ..0, .., Lm and j = −Lm, .., 0, .., Lm (m = 1, 2, 3, 4), where ε is

a tunable parameter. The right-hand side of (A.29) max(F (ωabm, θabm, qm,x(i), qm,y(j)))

represents the local maxima of F (ωa, θa, x, y) (m = 1), F (ωa, θb, x, y) (m =

2), F (ωb, θa, x, y) (m = 3), and F (ωb, θb, x, y) (m = 4). The value of Lm may

not be determined only by (A.29). In this case, Lm = Lth, where Lth is the

maximum threshold of Lm, and a tunable parameter.
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Figure captions

Figure 1: Wave height predicted from Eq. (3) for the (a) coarse-resolution ((rω, ∆θ) =

(1.1, 15◦)), and (b) fine-resolution cases ((rω,∆θ) = (1.11/2, 3◦)). The contours near (x, y)

= (0, 0) are those of the initial wave heights H0 (Eq. (5)). Unit=m.

Figure 2: Normalized F at (a) (ω/(2π), x, y) = (0.1 Hz, 3000 km, 1800 km), and (b)

(ω/(2π), x, y) = (0.1 Hz, 3400 km, 1400 km) for the fine-resolution (blue) and coarse-

resolution cases (red).

Figure 3: Wave spectra F (Eq. (3)) at (ω/(2π), t) = (0.1 Hz,125 hour) and at (a) θ = 15◦,

(b) θ = 30◦, and (c) θ = 21◦ for the coarse-resolution case. (d) Same as (a) but for the

fine-resolution case, (e) same as (b) but for the fine-resolution case, and (f) Same as (c)

but for the fine-resolution case. Unit= m2 · s · rad−1.
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Figure 4: Schematic illustration of the interpolation F (ω, (θa + θb)/2) from F (ω, θa) and

F (ω, θb) in the x−y plane. The blue and red contour lines are contour plots of F (ω, θa) and

F (ω, θb), respectively. The green dashed contour lines are contour plots of F (ω, (θa+θb)/2),

as interpolated from F (ω, θa) and F (ω, θb). The points A, B, C are local maxima of

F (ω, θa), F (ω, θb), and F (ω, (θa + θb)/2), respectively.

Figure 5: Schematic illustration of the interpolation. The grid line (dashed line) was the

grid for wave modeling in the x − y plane, and wave spectra on the grids were estimated.

The green, brown, black and red contour lines are contour plots of Faa, Fab, Fba, and

Fbb, respectively. The P1, P2, P3, and P4 are local maximum positions of Faa, Fab, Fba

and Fbb, respectively. The groups of wave grid points C1, C2, C3, and C4 are wave grid

points surrounding the contours of Faa, Fab, Fba and Fbb, respectively. The value of Fq

at Q, the position of which was interpolated from the positions of Qm (m = 1, 2, 3, 4),

was interpolated from the values of Faa at Q1, Fab at Q2, Fba at Q3 and Fbb at Q4,

respectively. The points in C (blue points) were interpolated from the grid positions in

Cm (m = 1, 2, 3, 4). The values of Fq on the points in C (blue points) were interpolated

from the values of Faa on the grids in C1, Fab on the grids in C2, Fba on the grids in C3,

and Fbb on the grids in C4, respectively.

Figure 6: The wave height was predicted from Eq. (3) and SCIM was applied to the wave

spectra for (a) ε = 10−2 and (b) ε = 10−10

Figure 7: Wave spectra F (ω, θ) as a function of ω/(2π) and θ at (x, y, t) = ( 3000 km,

1800 km, 125 hour) obtained from (a) the SCIM, (b) equations (3) and (4), (c) equa-

tions (3) and bilinear interpolation in the x − y plane ((rω, ∆θ) = (1.11/2, 0.5◦)), (d) the

same as (c) but for the coarse-resolution case. Unit= m2 · s · rad−1.

Figure 8: Wave spectra F (ω, θ) at (ω/(2π), θ) = (0.1(1.1)1/2Hz, 25◦) for t = 8.3, 50, 91.6

and 133.3 hour (from left to right contour plots). Unit= m2 · s · rad−1. dashed line: 25◦

lines with respect to the x-direction.
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Figure 9: (a) Same as Figure 1a ((rω,∆θ) = (1.1, 15◦)) but for the dual swell systems

case. The contours like circles near (x, y) = (0, 0) and (x, y) = (0, 3000 km), are those of

the initial wave heights H0. (b) Same as Figure 1b ((rω, ∆θ) = (1.11/2, 3◦)) but for the

dual swell systems case. (c) Wave heights obtained from the SCIM. Unit= m.

Figure 10: Predicted peak wave periods (Unit=s) and peak wave directions (arrows) in

the northwest Pacific Ocean at 6 UT on May 22, 2008.

Figure 11: Predicted wave spectra in the area of 130◦ − 150◦ E and 10◦ − 30◦ at 6 UT

on May 22, 2008 at (a) (ω/(2π), θ) = (0.0751 Hz, −60◦), (b) (ω/(2π), θ) = (0.0751 Hz,

−45◦), (c) (ω/(2π), θ) = (0.0826 Hz, −60◦), and (d) (ω/(2π), θ) = (0.0826 Hz, −45◦).

Unit= m2 · s · rad−1.

Figure 12: Same as Figure 10 but the SCIM is applied.

Figure 13: Schematic illustration of the interpolation. The grid line (solid line) is a grid

for wave modeling in the x − y plane, and wave spectra on the grids are estimated. The

blue points correspond to blue points in Figure 5, and (qx(i), qy(j)) in Eq. (14). The red

points are grid points for which the spectral values were interpolated from those on blue

points. (a) In the case of (A.8), the red points are (i + Icx, j + Icy) (i, j = −L, .., 0, .., L),

(b) in the case of (A.11), the red points are (i + Icx, j + 1 + Icy) (i = −L, .., 0, .., L,

j = −L, .., 0, .., L − 1), (c) in the case of (A.16), the red points are (i + 1 + Icx, j + Icy)

(i = −L, .., 0, .., L− 1, j = −L, .., 0, .., L), and (d) in the case of (A.21), the red points are

(i + 1 + Icx, j + 1 + Icy) (i = −L, .., 0, .., L − 1, j = −L, .., 0, .., L − 1). (e) Extended view

of (b), and (f) extended view of (d).

28



Figure 1



Figure 2



Figure 3



A

P

C

Q

R

x

y

Figure 4



Q12

C1

CP1

Q

CQ34

C3

C4

CP2

P3

P

Q3

x

y

Figure 5



Figure 6



Figure 7



Figure 8



Figure 9



Figure 10



Figure 11



Figure 12



i=0

A

(a)

(c)

(f)

qx(i) qx(i+1)qx(i) qx(i+1)

qy(j)

qy(j+1)

qy(j+1)

qy(j)

Q

A

Q

R

B

R

C

DE

F S

T

(b)

(d)

(e)

1

1

1

1

Figure 13


